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ABSTRACT 
 
 
 

1. This circular provides guidance to safety experts who have a background in probability and who want to 
acquire some expertise in the field of collision risk modelling applied to the determination of separation minima. 
 
2. This circular contains a theoretical introduction to all the collision risk models (CRMs) used in the Manual 
on Airspace Planning Methodology for the Determination of Separation Minima (Doc 9689) and the Manual on 
Implementation of a 300 m (1 000 ft) Vertical Separation Minimum Between FL 290 and FL 410 Inclusive (Doc 9574) and 
also provides further applications. 
 
3. To help the reader acquire a comprehensive understanding of all these CRMs, a unified derivation of 
these models, based on a general framework, is presented. It appears that all the CRMs in ICAO guidance material can 
be derived from the same fundamental equation, known as the Rice Formula, so that the main differences between the 
different models lie in the assumptions and approximations made for each of them. Understanding the assumptions and 
the simplifying approximations made in deriving a collision risk model is essential in order to assess whether the model 
is applicable to the airspace that one intends to study. 
 
4. An important criterion for a model to be applicable is its conservativeness; the application of collision risk 
models in safety assessment must be conservative. For example, when the risk estimate is compared with a threshold, 
the objective of the safety assessment is to ensure, with a specified level of confidence, that the actual risk is below the 
threshold. Therefore, it is essential, when applying a collision risk model, to check that the assumptions and 
approximations made in the modelling do not lead to an underestimation of the risk. In this circular particular attention 
has been paid to this point by clearly introducing all the assumptions and approximations made in the derivation of the 
different models. 
 
5. It is foreseen that in the future ICAO will publish real examples from States or Organizations where the 
use of the general framework outlined herein was adjusted in order to apply the generic design to particular operational 
environments. These examples will give users additional perspectives and solutions to particular problems found by 
other stakeholders using collision risk modelling. 
 
 
 
 

______________________ 
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Chapter 1 
 

INTRODUCTION 
 
 
 

1.1 The collision risk models (CRMs) covered in this circular are those presented in the Manual on Airspace 
Planning Methodology for the Determination of Separation Minima (Doc 9689) and the Manual on Implementation of 
a 300 m (1 000 ft) Vertical Separation Minimum Between FL 290 and FL 410 Inclusive (Doc 9574). This circular 
introduces a unified framework which enables an analytical derivation of all these collision risk models. The reason 
why it is possible to derive them under the same framework is that these CRMs share similar modelling assumptions. 
 
1.2 Chapter  2 introduces the appropriate nomenclature. Chapter  3 reviews the modelling of the uncertainty 
associated with aircraft location and examines some extensions to current CRMs. It appears that, from a controller’s 
viewpoint, the modelling of uncertainties described in Chapter  3 is inadequate in environments with a high update rate 
of aircraft positions. Actually, all CRMs presented in Docs 9689 and 9574 apply to environments with a low update 
rate. Possible methods for modelling uncertainties in environments with a high update rate are suggested in Chapter 3, 
 3.6. 
 
1.3 Chapter  4 introduces a key formula, called the Rice Formula, which plays a major part in the derivation of 
CRMs. Derivation of CRMs using the Rice Formula is presented in Chapters 5 to  7. 
 
1.4 Chapters  8 and  9 present a generic CRM which applies to any operational scenario involving a pair of 
aircraft, either for same/opposite directions (Chapter  8) or for crossing routes (Chapter  9). Since this CRM is particularly 
interesting for the risk assessment of predetermined operational hazards, it is presented in a more general form first, 
followed by an important application of this CRM in an ADS-C environment.  
 
1.5 Finally, Chapter 10 provides a list of recommended reading and reference material. 
 
 
 
 

______________________ 
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Chapter 2 
 

BACKGROUND 
 
 
 

2.1    CONSERVATIVE RISK ASSESSMENT 
 
2.1.1 As specified in Doc 9689, Chapters 5 and 6, when a safety assessment is performed on a proposed 
system’s separation minimum, there are two basic methods for determining whether the system is acceptably safe: 
 
 a) comparison with a reference system; or 
 
 b) evaluation of the system risk against a threshold. 
 
2.1.2 The comparison methodology is applied if the reference system is proven to be safe (historically or 
theoretically) and if the assessed system is very similar to the reference in the risk-related aspects. Collision risk modelling 
is one possible tool for comparing the reference system versus the assessed one, but it is not the only one. One example of 
a comparison study which does not rely on collision risk modelling is the radar comparison in Doc 9689, Appendix 6. 
 
2.1.3 The threshold in the second method is usually referred to as the target level of safety (TLS) and is 
expressed in terms of the expected number of fatal accidents per aircraft flying hour. This is the usual metric for 
societal risk, which is defined as the “average risk, in terms of fatalities, of groups of people (e.g. airport employees, 
crew or even society at large) exposed to an accident scenario”. By using this metric it is possible to compare the risk 
between different activities (e.g. road transportation versus air transportation). 
 
2.1.4 In order to ensure with a predetermined level of confidence that the real risk is below the TLS, it is 
necessary that each of the calculation steps in a risk assessment lead to an exact or conservative value. 
 
 
 

2.2    FEATURES COMMON TO THE CRMS USED IN ICAO DOCUMENTATION 
 
2.2.1 The purpose of collision risk models in the context of the determination of separation minima is to model 
the chain of events leading a pair of initially separated aircraft to a collision. The causation may or may not involve the 
responsibility of the air traffic controller, depending on whether the surveillance enables the controller to detect the loss 
of separation and possibly prevent the collision. These two configurations share common features. 
 
2.2.2 The first configuration occurs when the surveillance does not provide the air traffic controller with any 
means to detect the loss of separation and prevent the collision. In the lateral dimension, an example is a pair of aircraft 
on parallel routes, laterally separated. If the airspace uses procedural separation and if an aircraft starts to laterally 
deviate due to, for instance, a waypoint insertion error, the air traffic controller has no means to detect the deviation 
and, in the worst case, prevent a collision. Similarly, in the vertical dimension, a significant error in the altimetry 
system of an aircraft may result in the aircraft flying at an incorrect flight level and, if under procedural separation, this 
deviation would also go uncorrected. For all situations where the controller has no means to detect and prevent the loss 
of separation, the risk of collision is modelled according to the following assumptions: 
 
 a) Deviations of aircraft from their assigned routes/flight levels are modelled by probability density 

functions in the lateral and vertical dimensions. 
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 b) For an individual aircraft, deviations in the lateral and vertical dimensions are assumed to be 
independent. 

 
 c) In the lateral and vertical dimensions, aircraft are assumed to have been flying long enough along 

their routes so that the probability density function of the lateral and vertical deviations are stationary, 
i.e. independent of time. 

 
 d) As a consequence of c), the modelling of scenarios of atypical errors (such as waypoint insertion 

errors in lateral risk) may be done by adding a “tail” component to the probability distribution of the 
deviation in the corresponding dimension. 

 
Points c) and d) will be developed in further detail in Chapter  3. 
 
2.2.3 The second configuration occurs when surveillance regularly informs air traffic controllers of aircraft 
position so that they can detect a loss of separation and possibly prevent a collision. ADS-C surveillance provides an 
example of this for lateral and longitudinal separation in procedural airspace. The features common to the CRMs for 
this configuration are: 
 
 a) Deviations of aircraft from their assigned routes/flight levels are modelled by probability density 

functions in the lateral and vertical dimensions. 
 
 b) For an individual aircraft, deviations in the lateral and vertical dimensions are assumed to be 

independent. 
 
 c) Position reports provided by surveillance show that a pair of aircraft is separated and that, on the 

basis of the extrapolated positions from the initial speeds, the pair will remain separated in the future, 
at least until the next position update. 

 
 d) However, in the course of time, navigational deviations (in terms of position and speed), 

communication delays or surveillance errors may lead the pair of aircraft to lose separation, possibly 
leading to a collision, in spite of ATC surveillance. 

 
 e) At the next position update, the air traffic controller detects the loss of separation but may not have 

enough time to prevent a collision. 
 
For this second configuration, an implicit assumption is that the update period for position reporting is sufficiently long 
to allow the two aircraft to lose their separation until they eventually collide. 
 
2.2.4 When the position update rate is high and contradicts this implicit assumption (as in radar surveillance), it 
is necessary to refine the chain of causation leading an air traffic controller to miss a loss of separation that is visible on 
a display. This requires, for instance, inclusion in the modelling of potential misunderstandings between pilots and 
controllers or heavy controller workload. This is discussed further in Chapter 3,  3.6. 
 
 
 

2.3    ROUTE NETWORKS 
 
The most convenient way to describe route networks is to assume that they are made up of linear segments organized 
into a variety of track geometries. These geometries generally simplify to the following scenarios: 
 
 a) aircraft on two parallel tracks separated by a distance Sy. The distance Sy is usually referred to as the 

lateral separation minimum (standard) between the tracks. The direction of the traffic may be the 
same or opposite; 

 
 b) aircraft on multiple (near-) parallel tracks as in the North Atlantic Organized Track System. Again, 

the aircraft may be flying in the same or opposite direction; 
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 c) aircraft flying in the same direction on the same flight level of the same track; 
 
 d) aircraft on different flight levels of the same track, flying in the same or opposite direction; 
 
 e) aircraft flying on the same flight level of intersecting tracks; 
 
 f) aircraft flying on different flight levels of intersecting tracks. 
 
 
 

2.4    REPRESENTATION OF AIRCRAFT 
 
2.4.1 It would be impossible to model a collision between aircraft using complex aircraft shapes and collision 
geometries. Complex aircraft shapes therefore are modelled by simpler shapes like boxes or cylinders enveloping the 
real shapes as in Figure 2-1. The choice between a box or a cylinder is optional, in principle, but any subsequent 
calculations are greatly simplified if the box is used for parallel tracks and aircraft on the same track, and the cylinder 
for aircraft on intersecting tracks. A collision between two aircraft corresponds to an intersection of the corresponding 
volumes. 
 
 

 
Figure 2-1.    Modelling of aircraft shapes 
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2.4.2 Modelling a collision in terms of the intersection of volumes has an equivalent representation if a double-
size volume is associated to one of the aircraft and a “zero-size” volume to the other aircraft. This is illustrated in 
Figure 2-2 (for crossing routes) and in Figure 2-3 (for parallel routes), where aircraft A1 has a double-size volume and 
aircraft A2 is reduced to a point. For this equivalent representation, a collision can be seen as a particle entering a given 
volume. This representation will be the one used for the different collision risk models. The previous modelling can be 
easily extended to different aircraft sizes, where one aircraft would have a “sum-of-aircraft size” volume and the other 
aircraft would have a “zero-size” volume. 
 
 

 
Figure 2-2.    Modelling a collision in terms of the intersection of volumes for crossing routes 

 
 
 

 
Figure 2-3.    Modelling a collision in terms of the intersection of volumes for parallel routes 
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2.5    SEPARATION CRITERIA 
 
2.5.1 The unit for a separation minimum (standard) is either a time duration (usually in minutes) or a distance 
(in NM for the horizontal and in feet for the vertical). 
 
2.5.2 Separation minima expressed in units of time usually apply to procedural airspace, where aircraft are 
required to report when they arrive at predetermined spatial locations. The air traffic controller must ensure that the 
temporal separation Δt between two co-altitude aircraft arriving at the same spatial location is greater than or equal to a 
predetermined separation minimum, i.e. Δt ≥ Stime–min. 
 
2.5.3 Separation minima expressed in units of distance are either vertical or horizontal. For distance-based 
separation, aircraft positions may be displayed at regular time intervals on the controller’s screen. These positions are 
either sent by the aircraft (as in ADS-C or ADS-B) or measured by ground equipment (as in radar surveillance). The air 
traffic controller must ensure that at all times, and for all pairs of aircraft, either the horizontal or the vertical separation 
is greater than the corresponding separation minima. 
 
 
 
 

______________________ 
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Chapter 3 
 

MODELLING OF THE UNCERTAINTY ASSOCIATED  
WITH AIRCRAFT LOCATION 

 
 
 

3.1    INTRODUCTION 
 
3.1.1 “Uncertainty associated with aircraft location” is the difference between the actual aircraft location and 
the location where an air traffic controller believes the aircraft to be. 
 
3.1.2 As seen in Chapter 2,  2.4, a collision between aircraft can be seen as one “zero volume” aircraft entering a 
“double volume” centred on the other aircraft. A collision has occurred if both aircraft are inside the double-size cylinder 
in Chapter 2, Figure 2-2, or the double-size box in Figure 2-3. 
 
3.1.3 The relative position of one aircraft with respect to the other is represented by X or the triple ( ), , .x y z  For 
aircraft moving in the same or opposite direction, x denotes the relative position of the aircraft in the longitudinal 
dimension, and ,y z are the relative positions in the lateral and vertical dimensions. 
 
3.1.4 For two aircraft on crossing routes, ( ),x y denotes the relative position in the horizontal plane, and z denotes 
the relative position in the vertical dimension. Relative velocity is represented by putting a dot over a relative position. For 
example, z represents the relative vertical velocity and ( ),x y represents the relative horizontal velocities for a crossing-
routes case. In what follows, a velocity component will often be referred to as a speed when the context is clear. It is 
understood then that the speed could be negative. Finally, when a symbol depends on time, an index t will be added to it. 
This convention also applies to density functions. The possible time-dependence of position and speed deviations is 
discussed in 3.2. 
 
 
 

3.2    STATIONARY AND NON-STATIONARY CASES 
 
3.2.1 Figure 3-1 represents a set of individual aircraft trajectories on a given route. Assuming that the aircraft 
have been flying sufficiently long on the route to have reached a kind of “steady state”, it can be concluded that the 
density function of the lateral deviations from the assigned route at a given time, t, ft.(y), is the same for all t. In that 
case, ft.(y) no longer depends on t, so that the t index can be dropped. The density is said to be stationary if it is 
independent of t. Strictly speaking, it is the underlying stochastic process which is stationary. 
 
3.2.2 By contrast, consider an aircraft that is assumed to be flying at some indicated constant speed or Mach 
number on a route. If this indicated speed is subject to some small uncertainty or technical tolerance, this will induce a 
position error for the aircraft Δx = t (vindicated – vactual), where t is the flying time of the aircraft since its last position 
report (see Figure 3-2). In that case the longitudinal deviation increases linearly with time. Therefore the associated 
density is not stationary. 
 
3.2.3 This concludes the introduction to the modelling of the evolution of aircraft deviations in the course of 
time. Discussion will now focus on the modelling of deviations when they are assumed to be independent of time. This 
applies essentially in the lateral and vertical dimensions. 
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Figure 3-1.    A set of individual aircraft trajectories on a given route 

 
 
 
 

3.3    APPLICATION OF EXTREME VALUE THEORY TO THE MODELLING  
OF ATYPICAL LARGE DEVIATIONS 

 
3.3.1 In current ICAO documentation, the modelling of large deviations does not rely on extreme value theory, 
but rather on various empirical considerations. However, extreme value theory provides a rigorous frame for the 
justification of this empirical modelling, which is why some key results from extreme value theory will be introduced 
before discussing how atypical deviations are currently modelled in ICAO documentation. 
 
3.3.2 First two key results will be introduced and then it will be shown how these results enable, in practice, the 
modelling of the tail distribution from a collected data sample X1, X2, …, Xn of aircraft deviations, assumed to be 
independent and identically distributed. 
 
3.3.3 Consideration is given to n independent random variables X1, X2, …,  Xn, with distribution F. Mn denotes 
the maximum of X1, X2, …, Xn. Distribution F is said to be extremal if it is possible to find two sequences an and bn such 

that the affine transformed maximum n n

n

M b
a
−

converges in distribution towards a distribution G. This is equivalent to 

saying that ( ) ( )lim n
n n nF a x b G x→∞ + =  for all x. If this is the case, then G is defined up to a certain scaling and shifting 

factor. This means that if it is possible to find two sequences an and bn such that ( )n
n nF a x b+  converges to G(x), and two 

other sequences cn and dn such that ( )n
n nF c x d+  converges to another function H(x), then there exists scaling and 

shifting constants α and β such that ( ) ( )G x H xα β= +  (see Chapter 10, Reference 4, Theorem 14.2). The first 
fundamental result from extreme value theory (the so-called Fischer-Tippet Theorem, see Chapter 10, Reference  4, 
Theorem 14.3) is that, if F is extremal, there are only three possible choices for the kind of limit distribution G(x) (up to 
the scaling and shifting factors previously mentioned): 

A B C

Waypoints reports at A, B, C Continuous probability density

Individual aircraft trajectory

Track centre line
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Figure 3-2.    Longitudinal deviation and time 
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3.3.5 Another formulation for extremal distributions is to say that F is attracted by G, where G is any of the 
Frechet, the Weibull or the Gumbel distributions. MDA(Hξ) (maximum domain of attraction) denotes the class of all 
distributions F which are attracted by the distribution (Hξ). A criterion for checking if a given distribution F belongs to 
MDA(Hξ) is provided by the so-called von Mises conditions (see subsection 3.3 of Chapter 10, Reference 6). It turns 
out that all families of distributions fall within the maximum domain of attraction of one of the three limit distributions 
in 3.3.3. 
 
3.3.6 This first fundamental result has been mentioned in order to introduce the key concept of MDA. Now, if a 
given distribution F is known to belong to MDA(Hξ), it is possible to approximate the tail distribution of F by using a 
generalized pareto distribution (GPD). This is the second fundamental result that will now be explained. 
 
3.3.7 Generalized pareto distribution (GPD) (Gξ) is defined by: 
 

 ( ) ( ) 1/1 1 , if 0
1 exp( ), if 0.

xG x
x

ξ

ξ
ξ ξ

ξ

−⎧ − + ≠⎪= ⎨
− − =⎪⎩

 (3-1) 

 
If ξ is positive, then Gξ.(x) is defined for positive x. If ξ is negative, then Gξ.(x) is defined for 0 ≤ x ≤ –1/ξ. Similarly, the 
scaled GPD, Gξ;β.(x), is defined by replacing the argument x above by x/β. The support has to be adjusted accordingly. 
If X is a random variable with distribution F, then for a fixed positive threshold, u, the excess distribution over the 
threshold u, Fu, is defined as: 
 
 Fu(x) = Pr{X – u ≤ x|X > u}. 
 
3.3.8 Then the second fundamental result (see Theorem 3.4.13 in Chapter 10, Reference 6) claims that, if F 
belongs to MDA(Hξ), then for sufficiently large positive values of u, Fu(x) can be approximated by a scaled GPD 
Gξ;β(u).(x), where β(u) is a positive function of u. 
 
3.3.9 In practice, this result is used as follows. Given a collected data sample X1, X2, …, Xn of independent random 
variables with distribution F, extreme value theory provides several methods for estimating the three unknown parameters: 
 
 a) the value of the threshold û; 
 
 b) the shape parameters ξ̂  for which F belongs to ˆ( )MDA H

ξ
, and the scaling parameter ˆ,β which provide 

the best approximation ( )ˆ ˆˆ ;
ˆ( )  for .uF x G x x u

ξ β
≈ ≥  

 
3.3.10 Once ˆ,ξ û  and β̂  have been estimated, from the equality Fu(x) = F (u + x)/(1 – F(u)) one obtains: 
 

 
( ) ( )( )

( )( )
ˆ ˆ;

ˆ ˆ;

ˆ ˆ1 ( ) 1 ( ) 1

ˆ1

F x F u G x u

k G x u
n

ξ β

ξ β

− ≈ − − −

≈ − −
 for ˆx u≥  (3-2) 

 
where k is the number of items greater than û in the collected data sample X1, X2, …, Xn. 
 
3.3.11 The modelling of the tail distribution of Equation ( 3-2) is illustrated using a data sample of 500 000 
randomly simulated normal variables with mean zero and standard deviation 1, where only the positive values (around 
250 000) have been retained. Figure 3-3 shows the diagram Pr {X > x} as a function of x, where the vertical axis is in 
logarithmic scale. Extreme value theory claims (see Equation (3.40) of Chapter 10, Reference 6) that normal 
distributions belong to MDA(H0), so that the shape parameter ξ̂ should be close to zero. For ξ = 0, Equations ( 3-1) and 

( 3-2) show that the tail distribution 1 – F(x) is approximated by 
ˆ

exp( )ˆ
k x u
n β

− , which should appear in Figure 3-3 as a 
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straight line, due to the logarithmic scale. For a threshold value û = 3.2, the parameters ˆ 0.089ξ = −  and ˆ 0.31β =  have 
been estimated by applying a maximum likelihood technique, and the approximated tail distribution is shown in the left 
diagram of Figure 3-3. Also added, as a dashed line, is the straight line which corresponds to the “theoretical” case 
ˆ 0.ξ =  

 
3.3.12 To help the reader appreciate the effect of the shape parameter ξ on the modelling of the tail distribution, 
represented on the right diagram of Figure 3-3 is a GPD tail distribution for the three different values ξ = –0.2, ξ = 0 
and ξ = 0.2. 
 
3.3.13 In current ICAO documentation, the use of an exponential distribution for the modelling of distribution 
tails is often seen, without justification. In this section it can be seen that this choice is justified for all distributions 
which belong to MDA(H0); Chapter 10, Reference 6 gives numerous examples of distributions in MDA(H0), such as: 
 
 a) the normal and the log-normal distributions; 
 
 b) exponential distributions; 
 
 c) Weibull distributions; 
 
 d) Erlang distributions. 
 
3.3.14 As previously indicated, the modelling of distribution tails in current ICAO documentation is based on 
empirical considerations that will now be explained. 
 
 
 
 

 
Figure 3-3.    Modelling of tail distributions 
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3.4    DISTINCTION BETWEEN TYPICAL AND ATYPICAL DEVIATIONS  
IN CURRENT ICAO DOCUMENTATION 

 
3.4.1 Typical deviations correspond to deviations observed in routine practice. They can be modelled by collecting 
a data sample and estimating the underlying distribution. In practice, the estimation is parametric in the sense that one first 
chooses a distribution family and then estimates the parameters of the distribution using one of the many existing methods 
(maximum likelihood, method of moments, etc.). The choice of the family of distributions relies either on some 
knowledge of the distribution of the deviation (for GPS, deviations are often taken to be Gaussian) or on some 
conservative criteria. 
 
3.4.2 On the other hand, atypical deviations happen in exceptional circumstances and are impossible to model 
from a collected data sample due to the size of the sample necessary to observe them. For example, a collected data 
sample might cover one week of traffic, whereas an atypical deviation that could possibly result in a collision might 
happen only once in one or more years.  
 
3.4.3 Assume that density functions for typical and atypical deviations, fcore(x) and ftail(x) respectively, have 
been determined. Then the overall density function of the deviations is modelled by the mixture f.(x) = (1 – α) fcore(x) + 
α ftail(x), where α is the rate of atypical deviations. Notice that this modelling differs from extreme value theory, since 
the ftail(x) component applies to the whole domain of the distribution, whereas in extreme value theory the 
approximated tail distribution provided by Equation ( 3-2) holds only when x is greater than a certain threshold for û.  
 
 
 

3.5    DETERMINATION OF THE DISTRIBUTION OF ATYPICAL ERRORS  
 
3.5.1 As previously stated, the choice of a double exponential (DE) distribution for the distribution ftail(x) of 
atypical deviations is often seen. It can also be used for the distribution fcore(x) of typical errors, in order to add 
conservativeness. Recall that the density fDE associated with a DE distribution is given by: 
 

 1( )
2

y

DEf y e λ

λ
−

=  for .y−∞ < < ∞  (3-3) 

 
3.5.2 For example, deviations for RNP k (k = 10 for instance) aircraft could be modelled as:  
 

 1( )  with .
2 ln(0.05)

y kf y e λ λ
λ

−
= = −  (3-4) 

 

The parameter λ is chosen to satisfy the requirement ( ) 0.95,
k

k

f y dy
−

=∫ which states that RNP k aircraft are expected to 

have position errors less than k NM in magnitude during 95% of their flight time.  
 
3.5.3 Linear combinations of DE distributions have been used to avoid underestimating the probability of large 
deviations due to atypical lateral errors in the safety assessment performed for the implementation of 50 NM lateral 
separation in an RNP 10 environment (see Chapter 10, Reference 6). The overall density function of lateral deviations 
was chosen as f.(y) = (1 – α) fcore(y) + α ftail(y), where fcore(y) is the density function of lateral deviations for an RNP 
aircraft, given by Equation ( 3-4). tail ( )f y  is the density function of atypical lateral deviations and α is the probability 
that an aircraft’s lateral deviation at an arbitrarily chosen instant is due (at least partly) to an atypical error. It was 
decided in the safety assessment to model  ftail(y) as a DE density function. For each level of occupancy, the parameter 
α was chosen to have the maximum acceptable value that it could assume when the lateral overlap probability attained 
its maximum acceptable value (for that occupancy level). The λ parameter of ftail was conservatively assumed to equal 
Sy. 
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3.5.4 Figure 3-4 shows a pair of aircraft on two parallel routes separated by Sy, where the lateral deviations are 
denoted by y1 and y2. Representing the two aircraft as boxes with width λy (see Chapter 2, Figure 2-3), it can be seen 
that the two aircraft are in lateral overlap if the lateral deviation of the second aircraft, y2, belongs to the interval 

1 1,y y y yS y S yλ λ⎡ ⎤− − − +⎣ ⎦ . The probability for the two aircraft to be in lateral overlap is then given by: 
 

 
1

1

1 2 2 1 1 1 1( ) ( ) ( ) ( ) ( ) .
y y y y

y y y y

S y S

y y
S y S

P S f y f y dy dy f y f y y dy dy
λ λ

λ λ

− + +∞ ∞

−∞ − − − −∞

⎛ ⎞ ⎛ ⎞
⎜ ⎟= = −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∫ ∫ ∫ ∫  

 
Notice that the two aircraft are assumed to have the same probability density function f.(y). The value of the λ 
parameter associated with ftail.(y), which maximizes the probability of lateral overlap, is approximately equal to the 
lateral separation minimum, Sy. Accordingly, the probability density function associated with the lateral errors was 
taken as: 
 

 

core tail

core

tail

(1 ) ( )  ( )

   (for an RNP k)
ln(0.05)

50 NM.y

DE DE
k

S

α λ α λ

λ

λ

⎧ − +
⎪
⎪ = −⎨
⎪
⎪ = =⎩

 (3-5) 

 
This concludes the discussion on modelling of the uncertainty associated with aircraft position. Discussion will now 
focus on the limitations of this modelling, particularly for the case of operational errors in environments with frequent 
position updating. 
 
 
 
 

 
Figure 3-4.    A pair of aircraft on two parallel routes separated by Sy, 

where the lateral deviations are denoted by y1 and y2 
 
 
 

Sy

y2

y1
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3.6    EXTENDING THE MODELLING OF OPERATIONAL RISK — 
FROM THE AIR TRAFFIC CONTROLLER’S VIEWPOINT 

 
3.6.1 As set out in Chapter 2,  2.2, the models in the Manual on Airspace Planning Methodology for the 
Determination of Separation Minima (Doc 9689) and the Manual on Implementation of a 300 m (1 000 ft) Vertical 
Separation Minimum Between FL 290 and FL 410 Inclusive (Doc 9574) support essentially procedural separation. The 
pertinent lateral and vertical models do not account for any air traffic controller intervention. The longitudinal distance-
based models do, but the current modelling is valid only for low update rates. In addition, the longitudinal separation 
minimum is sufficiently large to allow successful intervention. 
 
3.6.2 In this section, the modelling of aircraft navigation deviations, from the viewpoint of an air traffic controller, 
is examined. Recall that “aircraft navigation deviation” represents the difference between the actual location of the aircraft 
and where the air traffic controller believes the aircraft to be. A deviation dt at time t may be modelled, for example, by a 
density ft.(●). The time dependence refers to the uncertainty, at time t, associated with the position of the aircraft from the 
controller’s viewpoint. At first sight, it is reasonable to model this uncertainty as a function of time when aircraft positions 
are updated at regular intervals. At the time of the update the controller “knows” where the aircraft is with an uncertainty 
associated with the position estimate, and this uncertainty is likely to increase in the course of time due to possible 
navigational errors. 
 
3.6.3 For example, if the update rate is once every 30 minutes, then 15 minutes after a position update the air 
traffic controller cannot be certain that the aircraft has not deviated from its schedule for any reason. Therefore, it 
makes sense to model the possible location of the aircraft at time t as a random quantity, whose density ft.(●) depends 
on time. 
 
3.6.4 However, if the update rate increases to an update every couple of seconds, as in radar surveillance, the 
previous modelling is no longer adequate for modelling a deviation from the assigned route. The reason is that the time 
duration between consecutive position updates is so short that the deviation has to be very small and cannot account for a 
risk of collision. In other words, the air traffic controller has no reason to believe that the succession of position updates 
for an aircraft does not correspond to the route followed by that aircraft. Even if one or two position updates have a large 
error, the air traffic controller can predict the aircraft position from the previous position updates and correct the large 
errors. It is only for consecutive large errors that the air traffic controller will not be able to detect and correct the errors. 
Therefore, the previous modelling applies provided that, in the modelling, one has added the occurrence of consecutive 
large errors. 
 
3.6.5 There are a number of alternative ways to model the uncertainty associated with aircraft position, from a 
controller’s viewpoint. A first possibility is to include latency terms in the modelling. Latency represents the “age” of the 
position displayed on a controller’s screen, and it is the sum of all time delays between the elaboration of the position and 
its final display. If the latency is constant, then it is impossible for the air traffic controller to detect it, and in that case the 
controller sees aircraft backward from their actual position. Latency terms induce a time uncertainty, rather than a position 
uncertainty, in the sense that the position displayed on the controller’s screen actually corresponds to the aircraft’s 
position, but at a previous time. Another form of time uncertainty is due to the delay of the tracking system in detecting 
aircraft manoeuvres. For example, an aircraft may appear on the controller’s screen as flying in a straight line whereas it 
has already started turning. As a consequence the controller will have an incorrect interpretation of the aircraft’s profile. 
 
3.6.6 In addition to the above technical sources of uncertainty, cognitive factors in a controller’s mind may play 
a part. For example, when a controller expects an aircraft to perform a manoeuvre, the controller cannot be certain that 
the aircraft has performed that manoeuvre until it can be seen on the controller’s screen. If the aircraft does not carry 
out the expected manoeuvre, the detection of the operational error by the controller will not be instantaneous, 
particularly if the controller is busy, or in the case of a technical time delay. 
 
3.6.7 Figure 3-5 shows an example of the latter in the vertical dimension, where one aircraft is climbing and is 
expected (by the air traffic controller) to level off, while the other one is steady at the next flight level. Notice also that 
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the deviating trajectory shown in Figure 3-5 is essentially deterministic, in the sense that it corresponds to an 
extrapolation from the climbing phase. Elements that are not deterministic and have to be modelled in probabilistic 
terms are related to the following: 
 
 a) What if the arrival time of the steady aircraft at the “vertical colliding point” had been slightly 

different? 
 
 b) How long would it take the controller to detect this operational error? 
 
 c) What would be the chance of the controller solving the operational error before a collision? 
 
Scenarios of operational error, such as the one illustrated in Figure 3-5, play a significant part in the operational risk in 
the terminal control area where climbing aircraft are often requested to level off. 
 
 

 
Figure 3-5.    Possible operational error scenario 

 

FL

Real trajectories

Possible operational error
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3.6.8 More generally, scenarios involving a misunderstanding of the aircraft’s route by the air traffic controller 
can often be modelled by deterministic trajectories, in the sense that it is possible to infer without ambiguity what will 
be the “unexpected” future trajectory of the aircraft. Such a case has been discussed for the vertical dimension, but the 
same also holds for the horizontal plane when the air traffic controller expects an aircraft to turn but it keeps going in a 
straight line. It even holds in the “speed dimension,” for instance when an air traffic controller requests an aircraft to 
increase its speed (due to trailing aircraft) and the aircraft does not follow the instruction. In all these cases, there is no 
gain in modelling a deviation in terms of a random variable dt distributed according to a density ft.(d), since the 
deviating trajectory is essentially deterministic. 
 
3.6.9 This unified framework does not intend to cover the high surveillance update rate aspect of collision risk 
modelling for operational errors. This aspect has just been mentioned to emphasize that the framework applies only to 
collision risk models in Docs 9689 and 9574 and that none of them address the modelling of operational errors in radar 
surveillance. 
 
3.6.10 The reader who is interested in the modelling of operational errors in terms of deterministic trajectories is 
referred to Chapter 10, Reference 4, where several operational errors in the vertical dimension have been modelled that 
way for the safety assessment of reduced vertical separation minimum (RVSM) in the United Kingdom. 
 
 
 
 

______________________ 
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Chapter 4 
 

THE RICE FORMULA 
 
 
 

4.1    INTRODUCTION 
 
4.1.1 As was seen in Chapter 3, a collision between aircraft can be modelled as a particle (representing the 
relative position of the centre of one aircraft) entering a volume around a second aircraft. Furthermore, each aircraft 
deviates “at random” from its assigned route so that the particle also follows a random path. 
 
4.1.2 There are several ways to determine analytically the probability for a particle, following a random trajectory, 
to enter a volume. In order to illustrate this probability in an intuitive way, a derivation based on fluid dynamics has been 
chosen. The benefit of this derivation is that the equation obtained has a very intuitive interpretation. 
 
4.1.3 First some preliminary concepts drawn from fluid dynamics will be introduced, and then these concepts 
will be used to determine the probability for a particle to enter a volume. 
 
 
 

4.2    PRELIMINARY CONCEPTS 
 
4.2.1 The area of a trapezium, having height h and width x, is given by the product h x. The area of a trapezium 
formed by two vectors is then calculated using the formalism of the dot product, a type of inner product. The dot 
product can be expressed as the product of the lengths of the vectors times the cosine of the angle between the two 
vectors. If n  is the vector normal to the width and having unit length, and L  is the vector directed along the side of the 
trapezium then, as can be seen in Figure 4-1, the height, h, is given by the dot product of n  and ,L  denoted by L n• . 
The area of the trapezium is given by ( )x L n• . 
 
 

 
Figure 4-1.    Area of a trapezium formed by two vectors 

cos ( )θVUV  =U •
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x

L
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4.2.2 Consider the following problem: 
 
 A fluid is flowing in the plane, and it is assumed that at each point ( ),x y of the plane the two-dimensional 

velocity vector, denoted by ( ), ,v x y is known. A portion of the space denoted by Ω and delimited by a 
boundary denoted by ∂Ω will also be considered. What is the flow rate entering Ω? 

 
4.2.3 Figure 4-2 illustrates the problem. The fluid velocity at each point is represented by a two-dimensional 
vector, and an infinitesimal portion of the boundary of Ω, having length dx and inner normal vector ,n has been 
magnified. Incoming flow rate means the amount of fluid entering Ω per unit time. ρ denotes the fluid surface density, 
so that the amount of fluid in a surface element, ds, is given by ρ dS. 
 
4.2.4 An infinitesimal time interval, δt, is considered in trying to find the amount of fluid entering into Ω 
through an infinitesimal element of the boundary of Ω having width dx and unit normal vector n  (see Figure 4-2). As 
illustrated in Chapter 3, Figure 3-3, it can be seen that the amount of fluid entering Ω  through dx during δt is contained 
in the trapezium whose width has length dx and inner normal ,n and whose side corresponds to .v tδ  The main 
approximation is that the velocity v is constant inside this trapezium. This approximation holds since, by letting δt tend 
towards zero, the trapezium collapses to dx. The area of the trapezium is given by ( )( ) .n v t dxδ•  Since it is the fluid 
entering Ω that is of interest, the focus will be on the parts of the boundary where the dot product n v•  is positive. For 
any quantity q, q+ denotes the positive part of q. That is: 
 

 
if 0

0 otherwise.
q q

q+ >⎧
= ⎨

⎩
 

 
 
 

 
Figure 4-2.    Determining the flow rate entering Ω 
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The negative part is defined similarly:  
 

 
if 0

0 otherwise.
q q

q− − <⎧
= ⎨

⎩
 

 
4.2.5 Notice that both the negative and the positive part are always positive. The amount of fluid entering Ω 
during the time interval δt can now be expressed as equal to the product of the incoming flow rate φincoming and the 
infinitesimal time interval δt with 
 

 
( )

( )

min

.

inco g t n v t dx

t n v dx

ϕ δ ρ δ

δ ρ

+

∂Ω

+

∂Ω

= •

= •

∫

∫
 (4-1) 

 
Therefore the incoming flow rate is given by: 
 
 ( )mininco g n v dxϕ ρ +

∂Ω

= •∫  (4-2) 

 
where the normal vector n  corresponds to the inner normal, directed towards the inside of Ω.  
 
 
 

4.3    ILLUSTRATION OF A SIMPLE CASE 
 
4.3.1 For clarification, consider the case of the incoming flow rate for a disk with radius r. The origin of the 
plane is fixed at the centre of the disk such that the boundary of the disk is represented by the one-parameter curve (see 
Figure 4-3). 
 

 [ ]cos
:   ,   0,2 .

sin
r 
r 

θ
θ π

θ
⎛ ⎞

∂Ω ∈⎜ ⎟
⎝ ⎠

 (4-3) 

 
4.3.2 As shown in Figure 4-3, the inner unit normal at θ is given by: 
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θ
θ
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= ⎜ ⎟−⎝ ⎠

,  

 
and the element of boundary corresponding to δθ has length rδθ. Therefore, if the velocity is given by: 
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the flow rate into the disk is given by: 
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Figure 4-3.    Incoming flow rate for a disk with radius r 

 
 
 
 

4.4    GENERALIZATION TO THREE DIMENSIONS 
 
4.4.1 The equation for the incoming flow rate generalizes to the case of a fluid in a three-dimensional space 
entering a three-dimensional volume. Here, the infinitesimal volume that is considered corresponds to a “tilted column” 
as shown in Figure 4-4, where S is the surface area of the base.  
 
4.4.2 By generalizing the two-dimensional case, Equation (4-2), to three dimensions, it can be seen that the 
incoming flow rate for a fluid entering a three-dimensional volume Ω having boundary ∂Ω is given by: 
 
 ( )min .inco g n v dSϕ ρ +

∂Ω

= •∫∫  (4-5) 

 
Here, the integral is a double integral over the boundary of the three-dimensional volume Ω, and ds represents a surface 
area infinitesimal. ρ represents the volume density such that the amount of fluid in a volume element dV is given by 
ρdV. 
 
 

4.5    APPLICATION TO RANDOM PROCESSES  
 
4.5.1 Returning to the initial problem, which involved finding the probability for a particle moving “at random” 
to enter a given volume, let ( ), ,t t tx y z  denote the three-dimensional position at time t and ( ), ,t t tx y z  the three-
dimensional velocity vector at time .t  
 

θ

dθ

dx = rdθ

r

n
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4.5.2 Stochastic processes are not always continuous (some processes have “jumps”) so that the speed at time t 
is not always defined. In this case, it will be assumed that for any time t, the state ( ), , , , ,t t t t t tx y z x y z  is defined and 
that the joint probability admits a density function ( , , , , , )t tf f x y z x y z= , where ( , , , , , )tf x y z x y z x y z x y zΔ Δ Δ Δ Δ Δ =  

[ ] [ ]{ , , , , }.t tP x x x x y y y y∈ + Δ ∈ + Δ …  
 
4.5.3 To simplify the notation, capital letters will be used to denote three-dimensional positions and velocities. 

tX will denote the three-dimensional position ( ), ,t t tx y z  of the particle at time t, and Vt the three-dimensional velocity 
( ), ,t t tx y z of the particle at time t. Similarly, X will denote a three-dimensional position ( ), , ,x y z  and V will denote a 
three-dimensional velocity ( ), ,x y z . Furthermore, when the symbol V appears in a dot product, an arrow will be added 
over it (writing it ),V  in order to recall that it represents a vector. 
 
4.5.4 Whenever a three-dimensional quantity is used to define a vector element, as in Figure 4-4, an arrow will 
be added on top of the symbol. Rather than considering the six-dimensional ( ), , , , , ,x y z x y z and the associated 
probability density function ( ), , , , , ,tf x y z x y z the notation (X,V) and ft (X,V) will be used as often as possible. 
 
4.5.5 Figure 4-5 shows how the probability of a three-dimensional stochastic process entering a three-
dimensional volume Ω can be seen in terms of the incoming rate of the trajectories. The tV  notation in Figure 4-5 is the 
velocity vector associated to the three-dimensional stochastic process Xt. Consider an infinitesimal boundary element of 
Ω located at X with surface area dS and with an inward unit normal vector .n Assume that the velocity tV of the 
stochastic process “around dS” equals .V The stochastic process, outside of Ω at t, enters Ω through dS between t and t 
+ δt if it is in the tilted cylinder having volume ( )( )n V t dSδ

+
•  at time t. The + means that if the velocity is opposite to 

the inner normal, there is no way for the process to enter. In other words, the probability of entering through dS 
between t and t + δt, given a velocity vector V at time t, is the probability to be in the small volume shown in 
Figure 4-5. Assuming that the tilted cylinder is small enough for the probability density function to be approximated as 
a constant in the infinitesimal volume element, the probability of the particle being in this small tilted cylinder is given 
by ( )( ), ( ) .tf X V n V t dSδ

+
•  It must be emphasized that the three-dimensional position X is not a random quantity but 

corresponds to a point on the boundary of Ω. However, the velocity vector V is allowed to vary, since the velocity is no 
longer deterministic. There is a need to integrate over all possible values V of the velocity tV  at time t. 
 
 
 

 
Figure 4-4.    Defining a vector element 
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Figure 4-5.    The probability of a three-dimensional stochastic process 

entering a three-dimensional volume Ω, seen in terms of the incoming rate of the trajectories 
 
 
 
 
4.5.6 Performing this integration, it is found that the probability for this random process, outside of Ω at t, to 

enter Ω at position X, through dS between t and t + δt, equals the triple integral ( )( )( ), ( ) :tf X V n V t dS dVδ
+

•∫∫∫  

 
 [ ]{ } ( )Pr outside   at  and enters  through  during ( , )( ) .tt dS t,t δt t dS f X V n V dVδ +Ω Ω + = •∫∫∫  (4-6) 

 
4.5.7 Integrating over all positions on the boundary of Ω , the probability of entering into Ω  during [ ],t t tδ+  
is given by:  
 
 [ ]{ } ( )Pr outside   at  and enters  during ( , )( ) .tt t,t δt t f X V n V dV dSδ +

∂Ω

Ω Ω + = •∫∫ ∫∫∫  (4-7) 

 
This equation is known as the Rice formula (see Chapter 10, Reference 10, pages 145 to 160). It is sometimes used in the 
one-dimensional case for estimating a frequency of crossing through a certain threshold (see, Chapter 10, Reference 12, 
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“the level-crossing problem”). Recall that dS corresponds to the surface infinitesimal at X and that n  corresponds to the 
inward normal at X. The symbol dS in Equation ( 4-7) is a two-dimensional surface element and dV represents a product of 
three infinitesimal speeds, so there are five integrals in total. 
 
4.5.8 As seen in Chapter 2, Figures 2-2 and 2-3, a collision can be modelled by a particle entering a certain 
volume. If Ω  denotes this volume, then Pr{outside Ω at t and enters Ω during [t,t + δt]} represents the probability that 
the two aircraft, geometrically separated at time t, enter into collision during the time interval [t,t + δt]. The modelling 
of a probability of collision using that representation was first published in 1993 (see Chapter 10, Reference 3). 
 
4.5.9 Later is this document Equation ( 4-7) will be used in that context, with Ω denoting one of the two 
volumes of Figures 2-2 and 2-3 (depending on whether parallel routes or crossing routes are considered). In that 
context, Equation ( 4-7) becomes: 
 

 
[ ]{ }

( )
Pr outside collision volume at  and collision during  

( , )( ) .t

t t,t δt

t f X V n V dV dSδ +

∂Ω

+

= •∫∫ ∫∫∫
 (4-8) 

 
4.5.10 Note that ft is a function of relative positions and velocities. It is therefore a density function formed by 
convolving the position and velocity densities for the two aircraft. This will be seen in more detail in later examples. In 
real cases, it is always possible to simplify Equation ( 4-8). Notice that the time variable in Equation ( 4-8) is in the t 
index of ft. In order to make this time dependence more explicit, let Ψ(t) be the integral term 
 
 ( )( ) ( , )( )tt f X V n V dV dS+

∂Ω

Ψ = •∫∫ ∫∫∫  (4-9) 

 
so that Equation ( 4-8) is rewritten as: 
 
 [ ]{ } ( )Pr outside collision volume at  and collision during .t t,t δt t tδ ψ+ =  (4-10) 

 
 
 

4.6    PROBABILITY OF THE PROCESS ENTERING Ω DURING [ta,tb] 
 
4.6.1 The Rice formula in Equation ( 4-7) gives the probability of entering Ω during an infinitesimal time 
interval [t,t + δt]. From the Rice formula, it is possible to derive an upper bound for the probability of entering Ω over a 
time interval[ta,tb]. The time interval [ta,tb] is divided into N consecutive subintervals of length δt = (tb,ta)/N, with N 
sufficiently large for δt to be considered as an infinitesimal. For 0 ≤ i ≤ N – 1, the consecutive time intervals are [ti,ti+1], 
with ti = ta + i × δt. 
 
4.6.2 At ta the stochastic process is assumed to be outside of Ω, and the time of first entrance into Ω is defined 
as follows: for all N – 1 consecutive time intervals, an indicator variable Fi is defined which is equal to 1 if the 
following conditions are satisfied: 
 
 a) Fk = 0 for 0 ≤ k ≤ i – 1; and 
 
 b) the stochastic process is outside of Ω at ti and it enters Ω during the time interval [ti,ti+1]. 
 
4.6.3 If one of the two previous conditions is not satisfied, then Fi = 0. It follows from condition a) that at most 
one Fi is different from zero, since once a given Fi differs from zero all the successive Fj (with j > i) have to be zero. 
Furthermore, if Fi = 1, then the time when the stochastic process enters into Ω for the first time belongs to the subinterval 

[ti,ti+1]. The fact that 
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4.6.4 Now, for 0 ≤ i ≤ N – 1, the following is obtained:  
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The inequality in the last line follows from the fact that event A = {outside of Ω at ti and enters Ω during [ti,ti+1]} is the 
sum of the two following disjoint events:  
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enters  during , outside of  at , and enters again  during .
a i i i

a i i i i

A A A

A t ,t t ,t

A t ,t t t ,t
+

+

=

= Ω Ω

= Ω Ω Ω

∪

 (4-13) 

 
4.6.5 Since A1 and A2 are disjoint, Pr{A} = Pr{A1} + Pr{A2} which implies that Pr{A1} ≤ Pr{A}. Furthermore, 
by Equation ( 4-10) Pr {outside of Ω at ti and enters Ω during [ti,ti+1]} = ψ (ti) δt. Putting together Equations ( 4-11) and 
( 4-12) the following is obtained: 
 

 
[ ]{ } ( )

( )

1

0

Pr collision during 

.
b

a

n-

a b i
i

t

t

t ,t t t

t dt

δ ψ

ψ

=

≤

≤

∑

∫
 (4-14) 

 
4.6.6 Equation ( 4-14) provides an upper bound for the probability of collision during the time interval [ta,tb]. It 
is now possible to examine under which additional assumption the “≤ ” symbol in Equation ( 4-14) can be replaced by 
the “ = ” symbol. Actually, the “≤ ” symbol in Equation ( 4-14) comes from the inequality Pr{A1} ≤ Pr{A} in the bottom 
line of Equation ( 4-12), with A1 and A2 defined in Equation ( 4-13). Since A1 and A2 are disjoint, they can be replaced by 
an equality, provided it is assumed that Pr{A2} = 0. In other words, zero probability needs to be assigned to the events 
“enters Ω  during [ta,ti], outside of Ω  at ti, and enters again Ω  during [ti,ti+1]” for all i. Neglecting the probabilities 
associated to all previous events for all i is the same as neglecting the probability of multiple collisions during [ta,tb]. In 
other words, if the probability of multiple collisions during [ta,tb] is neglected, then the “≤ ” symbol can be replaced by 
the “=” symbol in Equation ( 4-14). Under this additional assumption, the following is obtained: 
 

 [ ]{ } ( )Pr collision during .
b

a

t

a b
t

t ,t t dtψ= ∫  (4-15) 

 
4.6.7 The rationale for neglecting multiple collisions is a “rare event assumption”: it is assumed that the 
probability of one collision during the time interval [ta,tb] is so small that the occurrence of multiple collisions can be 
neglected. This assumption is often implicit and results from the choice of the metrics for the risk. As will be seen later 
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in this document, the usual metrics for risk is the number of fatal accidents per flying hour; however in practice, the 
risk assessment is done by estimating, for all proximate pairs of aircraft, the probability of collision. By doing so, the 
probability of multiple collisions for the same pair is implicitly neglected. 
 
4.6.8 The collision risk models presented in Doc 9689 and Doc 9574 will be introduced in subsequent chapters, 
and an analytical derivation for each of them based on the Rice formula will be provided. 
 
 
 
 

______________________ 
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Chapter 5 
 

LATERAL COLLISION RISK MODELLING FOR  
AIRCRAFT ON PARALLEL ROUTES 

 
 
 

5.1    INTRODUCTION 
 
5.1.1 A collision risk model for aircraft on parallel routes was developed by P.G. Reich in the early 1960s (see 
Chapter 10, Reference 13). This model quickly became known as the Reich model and was subsequently adapted for 
the modelling of collision risk in the vertical dimension, i.e. for aircraft at adjacent flight levels either on the same route 
or on crossing routes. 
 
5.1.2 This chapter introduces the original Reich model for the modelling of lateral collision risk for aircraft on 
parallel routes. Chapter 6 will model vertical risk using a similar approach. 
 
5.1.3 The Reich model is used in Doc 9574 (without being introduced) in the derivation of the performance 
specifications for reduced vertical separation minimum (RVSM). It is introduced in detail (without being analytically 
derived) in the Report of the Sixth Meeting of the Review of the General Concept of Separation Panel (RGCSP/6, 
Doc 9536) and its associated appendices. It is implicitly used in Appendices 12 to 15 of Doc 9689 for deriving navigation 
performance specifications of aircraft with a predetermined lateral separation between adjacent parallel routes. 
 
5.1.4 The Reich model mainly applies to the determination of strategic separation minima, i.e. lateral separations 
between parallel routes or vertical separation between adjacent flight levels. An important assumption in the Reich model 
is that aircraft are always assumed to have been flying sufficiently long on their routes to have reached a “steady state” in 
the lateral and vertical dimensions, where the distributions of the error terms no longer depend on time. 
 
 
 

5.2    NOTATION AND ASSUMPTIONS 
 
5.2.1 Consider two steady aircraft at the same altitude on two parallel routes nominally separated, and let Sy 
denote the lateral separation. Assume that the two aircraft will overlap in the longitudinal dimension during the flight 
time on their routes, and denote by tinit and tend the beginning and the end of their longitudinal overlap. It is recalled that 
a longitudinal overlap corresponds to an overlap in the longitudinal dimension of the boxes associated with each 
aircraft (see Figure 5-1). 
 
5.2.2 The objective is to determine the probability of collision for the two aircraft between tinit and tend. If a 
reference frame centred on one of the aircraft is taken, a collision corresponds to the situation that the relative position 
between the aircraft belongs to the box shown in Figure 5-2 where the coordinates of the four top corners have been 
added. Following the notation of Chapter 4, 4.5, (Xt,Vt) denotes the couple made up of the relative position and the 
relative velocity (both of them being three-dimensional) for the pair of aircraft and ft denotes the joint probability 
density function of this couple, conditioned on the pair being in longitudinal overlap. In what follows a velocity 
component will frequently be referred to as a speed (with the assumption that the speed could be negative). 
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Figure 5-1.    A longitudinal overlap 

 
 
 
 
 

 
Figure 5-2.    Aircraft reference frame 
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5.2.3 First, assume that the relative position and velocity terms can be decoupled in the three dimensions. For 
the longitudinal dimension this means that the longitudinal relative speed and position are independent of the relative 
speed and position in the two other dimensions. Similarly, the lateral relative speed and position are independent of 
those in the vertical dimension. This assumption does not take into account “directional perturbations” such as the 
wind, which are clearly not independent in the three dimensions. However, as per the next assumption, the Reich model 
applies to aircraft that are assumed to have reached a steady state, and it is the stationary distribution which is assumed 
to be independent in the lateral and vertical dimensions. 
 
5.2.4 With ( , , ),X x y z=  the three components of the position error, and ( , , ),V x y z=  the three components of 
the velocity error, the joint probability density function ft (X,V) can be written as the product of three factors, each 
corresponding to the joint probability density function of the speed and position error in one dimension: 
 
 ( ) , , , , , ,, ( , ) ( , ) ( , ).t x x t y y t z z tf X V f x x f y y f z z=  (5-1) 
 
5.2.5 Second, assume that both aircraft have been flying sufficiently long to have reached a steady state in the 
lateral and vertical dimensions. This means that the joint density of the relative lateral and vertical (position, speed) no 
longer depends on time. If the joint (position, speed) couple in each of the three dimensions is expressed as in 
Equation ( 5-2), this assumption means that the time index in the joint density for the relative vertical and lateral 
(position, speed) can be removed: 
 

 
, ,

, ,

, ,

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( ).

t t tx x t x t t tx x

y y t y t ty y

z z t z t tz z

f x x f x x f x x x x

f y y f y f y y y y

f z z f z f z z z z

= = = =

= = =

= = =

 (5-2) 

 
5.2.6 The probability density functions (pdfs) in Equation ( 5-2) have the following definitions: 
 
 a) ( )

tx tf x x=  is the pdf of the relative longitudinal position at time t, and ( )
t t t tx xf x x x x= =  is the pdf 

of the relative longitudinal speed at time t conditional on the relative longitudinal position at time t; 
 
 b) ( )yf y  is the pdf of the relative lateral position at any time, and ( )t ty yf y y y y= =  is the pdf of the 

relative lateral speed at any time t conditional on the relative lateral position at the same time t; 
 
 c) ( )zf z  is the pdf of the relative vertical position at any time, and ( )t tz zf z z z z= =  is the pdf of the 

relative vertical speed at any time t conditional on the relative vertical position error at the same 
time t. 

 
 
 

5.3    DERIVATION OF THE PROBABILITY OF COLLISION  
DURING A LONGITUDINAL OVERLAP 

 
5.3.1 The key factor in the Reich model is the probability of collision during a longitudinal overlap, Pr, for 
example. Once this factor has been determined, the Reich model in the lateral dimension for aircraft at the same 
altitude on parallel routes is easy to determine and this will be done in sections  5.4 and  5.5. 
 
5.3.2 In this section, the probability of collision during a longitudinal overlap is derived. In the Reich model, 
the expression for this probability is simplified with the help of several approximations. First, in 5.3.3 to 5.3.13, Pr is 
derived without any approximation. Then, in 5.3.14 to 5.3.18, it is shown how the expression for Pr can be simplified 
by applying additional approximations. 
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Analytical derivation of Pr 
 
5.3.3 Pr  represents the probability of collision during the time interval [ ],init endt t  of a longitudinal overlap. In 
order to determine Pr, two cases must be distinguished: 
 
 a) At ,initt  the two aircraft are in lateral and vertical overlap so that the collision corresponds to a “front-

to-rear” collision. 
 
 b) At ,initt  the two aircraft are not in simultaneous lateral and vertical overlap; this simultaneous overlap 

happens at some time during [ ],init endt t . The collision is either a “top-to-bottom” or a “side-to-side” 
collision. 

 
5.3.4 Let 1P  and 2P  be the probability of collision corresponding to the first and second case respectively. The 

first case is the easier to derive. The probability to be in lateral overlap at initt  is given by ( )
y

y

y
y

f y dy
λ

λ=−
∫  (recall that 

( )yf y is the pdf of the relative lateral position y, so that both aircraft are in lateral overlap when y yyλ λ− ≤ ≤ ) and is 
usually denoted by ( )y yP S , as seen before in Chapter 3, 3.4. Similarly, the probability to be in vertical overlap at initt  is 

given by ( )
z

z

z
z

f z dz
λ

λ=−
∫ and is usually denoted by Pz(0). The probability of collision corresponding to the first case is 

given by: 
 
 1 ( ) (0)y y zP P S P= . (5-3) 
 
5.3.5 Figure 5-3 illustrates the two scenarios of “top-to-bottom” collision and “side-to-side” collision 
corresponding to the second case. Each of these two scenarios has two further subcases, corresponding to opposite 
sides of the box. The box dimensions shown in Figure 5-2 are now used. For the “top-to-bottom” scenario illustrated in 
the left diagram of Figure 5-3, the longitudinal relative position at tinit belongs to [–λx, λx] (since both aircraft are in 
longitudinal overlap) but there is no simultaneous lateral and vertical overlap. During the time interval from tinit until 
the collision, the relative vertical position, which was initially greater than λz, reduces to the value λz, which 
corresponds to a “top-to-bottom” collision. Notice that from tinit until the collision, the longitudinal relative position 
remains inside [–λx, λx] since both aircraft are in longitudinal overlap. 
 
5.3.6 Equation ( 4-15) is now used to determine the probability of collision 2P  in the time interval [ ],init endt t  as  
 

 
[ ]{ }

( ) ( )
2 Pr collision during ,

 with ( ) ( , )( )
end

init

init end

t

t
t

P t t

u du t f X V n V dV dS+

∂Ω

=

= Ψ Ψ = •∫ ∫∫ ∫∫∫
 (5-4) 

 
where the volume boundary ∂Ω corresponds to the left, right, top and bottom sides of the box. Following the notation of 
Figure 5-3, indices 1 and 1’ are assigned to the top and bottom sides of the box, as well as indices 2 and 2’ to the two 
lateral sides, such that ∂Ω corresponds to the union of the four sides 1, 1’, 2 and 2’. The integral ( )tΨ in Equation ( 5-4) 
is the sum of four integrals, one for each side: 
 

 
( )
1 1' 2 2'

( ) ( , )( )

( ) ( ) ( ) ( ).

tt f X V n V dV dS

t t t t

+

∂Ω

Ψ = •

= Ψ + Ψ + Ψ + Ψ

∫∫ ∫∫∫  ( 5-5) 
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Figure 5-3.    Top-to-bottom and side-to-side collisions 

 
 
 
5.3.7 All four integrals will now be determined. The computations are developed in detail for the first integral 
only, since the three remaining integrals can be derived similarly. Starting with the first integral over the top of the box, 
represented in grey in Figure 5-2, the inward normal vector is directed downward so that the dot product ( )n V

+
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where  
 
 ( ) ( ) ( ) ( ) ( ) ( ).

t t tx t t y t t z z t t zy y z zx xf f x f x x x x f y f y y y y f f z z zλ λ= = = = = = =  

 
5.3.8 The following simplifications are now applied to Equation ( 5-6): 
 

 a) ( ) 1t ty y
y

f y y y y dy
∞

=−∞

= = =∫  for all y. 
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 c) ( ) ( )
y

y

y y y
y

f y dy P S
λ

λ=−

=∫  represents the probability for the pair of aircraft to be in lateral overlap. 

 

 d) Since for all t  in [ ],init endt t  the pair of aircraft are in longitudinal overlap, ( ) 1.
x

t

x

x
x

f x dx
λ

λ=−

=∫  

 

 e) { }( )t t z t t zz z
z

z f z z z dz E z zλ λ− −= = = =∫ . 

 
Thus, the following is obtained: 
 
 { }1( ) ( ) ( ).y y t t z z zt P S E z z fλ λ−Ψ = =  ( 5-7) 

 
5.3.9 For the bottom face 1’, the computation is similar to that for the top, except that the term ( )z zf λ is 
replaced by ( )z zf λ−  and the inner product ( )n V

+
• now corresponds to z+ . Therefore, 

 
 { }1' ( ) ( ) ( )y y t t z z zt P S E z z fλ λ+Ψ = = − − . ( 5-8) 
 
5.3.10 The lateral faces 2 and 2’ are similar to the top and bottom, except that the y and z indices are swapped. 
Without showing the calculations, the following equations are obtained: 
 
 { }2 ( ) (0) ( )z t t y y yt P E y y fλ λ−Ψ = =  ( 5-9) 

 
and 
 
 { }2 ' ( ) (0) ( )z t t y y yt P E y y fλ λ+Ψ = = − − . ( 5-10) 

 
5.3.11 None of the terms 1( ),tΨ 2 ( ),tΨ 1' ( )tΨ and 2' ( )tΨ depend on time t, since the densities ( )t ty yf y y y y= =  
and ( )t tz zf z z z z= =  are assumed to be time-independent. Using Equations ( 5-4), ( 5-5) and ( 5-7) to ( 5-10),  
 
 ( )2 end initP t t= − Ψ  ( 5-11) 
 
with 
 

 
{ } { }( )
{ } { }( )

( ) ( ) ( )

(0) ( ) ( ) .

y y t t z z z t t z z z

z t t y y y t t y y y

P S E z z f E z z f

P E y y f E y y f

λ λ λ λ

λ λ λ λ

− +

− +

Ψ = = + = − −

+ = + = − −
 ( 5-12) 

 
5.3.12 Since the probability Pr of collision during the time interval [ ],init endt t  equals the sum of 1P  and 2P  the 
following equation is finally obtained: 
 
 ( ) ( ) ( )1 2Pr 0y y z end initP P P S P t t= + = + − Ψ  (5-13) 

 
with Ψ given by equation ( 5-12). 
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5.3.13 Equation ( 5-13) gives an analytical expression for the probability of collision during a longitudinal 
overlap, with a minimum of simplifications. Paragraphs 5.3.14 to 5.3.18 show how this expression can be simplified by 
the use of additional approximations. 
 
 

Simplification of Pr using additional approximations 
 
5.3.14 A first approximation in Equation ( 5-13) is to replace λy and λz by zero. This approximation is justified by 
the fact that λy and λz, which represent the width and height of an aircraft, are usually very small in comparison to the 
lateral and vertical navigational performance. Hence ( )z zf λ  and ( )z zf λ−  can be approximated by (0),zf  and 
similarly ( )y yf λ  and ( )y yf λ− can be approximated by (0)yf . Using this first approximation, Ψ in Equation ( 5-13) 
becomes: 
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( ) (0) 0 0

(0) (0) 0 0 .

y y z t t t t

z y t t t t

P S f E z z E z z
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− +

Ψ = = + =

+ = + =
 

 
Then, since { } { } { }E v E v E v+ −+ =  for any real random variable ,v  
 
 { } { }( ) (0) 0 (0) (0) 0 .y y z t t z y t tP S f E z z P f E y yΨ = = + =  
 

Finally, a consequence of approximating ( )z zf λ  and ( )z zf λ− by (0)zf  is that ( ) ( )
y

y

y y y
y

f y dy P S
λ

λ=−

=∫  can be rewritten 

as ( ) ( ) 2 (0)
y

y

y y y y y
y

P S f y dy f
λ

λ

λ
=−

= ≈∫  and similarly (0) 2 (0)z z zP fλ≈ . Using the above, the following is obtained for 

Equation ( 5-12): 
 

 
{ } { }0 0

( ) (0)
2 2

t t t t

y y z
z y

E z z E y y
P S P

λ λ

⎛ ⎞= =
⎜ ⎟Ψ = +
⎜ ⎟
⎝ ⎠

. ( 5-14) 

 
5.3.15 It has already been observed that the two terms { }0t tE y y =  and { }0t tE z z =  do not depend on time 
due to the stationarity assumption. { }0t tE z z = can be seen as the expectation of the absolute value of the relative 
vertical speed conditional on a vertical overlap at t and the same holds for { }0t tE y y =  (expected absolute value of 
the relative lateral speed at t conditional on a lateral overlap at t). 
 
5.3.16 The same notation as in Doc 9689 is now applied and { }0t tE z z =  and { }0t tE y y = are represented as 
z  and y  respectively. Similarly, later in this document, the quantity { }0t tE x x =  (expected absolute value of the 

relative longitudinal speed at t conditional on a longitudinal overlap at t) will be denoted as .x  However, the reader 
should keep in mind that these expected quantities are conditional on an overlap in the corresponding dimension and 
that they correspond to absolute values of relative speed “at the time of an overlap”. The following is thus obtained: 
 
 ( ) ( ) ( )1 2Pr 0y y z end initP P P S P t t= + = + − Ψ  ( 5-15) 
 
with 
 

 ( ) (0) .
2 2y y z

z y

z y
P S P

λ λ

⎛ ⎞
Ψ = +⎜ ⎟⎜ ⎟

⎝ ⎠
 ( 5-16) 
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5.3.17 Aggregating Equations ( 5-15) and ( 5-16) gives: 
 

 ( ) ( ) ( )Pr 0 1 .
2 2y y z end init

y z

y z
P S P t t

λ λ

⎛ ⎞⎛ ⎞
⎜ ⎟= + − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 ( 5-17) 

 
Equation ( 5-17) gives the value of the probability of collision during a longitudinal overlap as a function of the duration 
of the longitudinal overlap, ( ).end initt t−  When the relative speed between the two aircraft is large enough, this duration 

can be approximated by 
2 x

end initt t
x
λ

− ≈ , so that Equation ( 5-17) becomes: 

 

 ( ) ( )Pr 0 1 .x x
y y z

y z

y z
P S P

x x
λ λ
λ λ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
 (5-18) 

 
5.3.18 Equation ( 5-18) is the final expression for the probability of collision during a longitudinal overlap, which  
will be used later in this document. The intermediate equations ( 5-14) to ( 5-17) are given only for information, showing 
how to update the model in order to account for “atypical” cases (such as a pair of aircraft flying at nearly the same 
speed, with a prolonged duration of longitudinal overlap). In  5.4 and  5.5 the approximations given above will be used 

implicitly, and particularly the duration of a longitudinal overlap will always be approximated by 2 .x
end initt t

x
λ

− ≈  

 
 
 

5.4    RISK ASSESSMENT BASED ON THE PROPORTION OF TIME  
IN LONGITUDINAL OVERLAP 

 
5.4.1 The usual metric for collision risk is an expected number of fatal accidents per flying hour, where one 
collision counts for two fatal accidents. In order to perform the risk assessment one has to collect a sample of air traffic 
during an observation period and to count the number of longitudinal overlaps in the same and in the opposite direction. 
The reason why one distinguishes between same and opposite direction will be explained later in this document. It 
results from the very different values of the relative speeds. 
 
5.4.2 For each pair of aircraft in longitudinal overlap, the corresponding probability of collision is given by 
Equation ( 5-18); the value of the total risk corresponds to the sum of all the probabilities of collision multiplied by two 
to convert from collisions to accidents. The risk per flying hour is then the ratio of the total risk divided by the total 
flight time. 
 
5.4.3 Assuming that a sample of the air traffic has been collected during an observation period, F is used to 
denote the total flight time during the observation period, and nbsame and nbopp the number of longitudinal overlaps in 
the same direction and in the opposite direction during the observation period. 
 
5.4.4 The expected absolute value of the relative longitudinal speed conditional on a longitudinal overlap is still 
denoted by x for two aircraft in the same direction. For two aircraft in the opposite direction, this expectation equals 
2 ,V  where V denotes the average speed of the aircraft. 
 
5.4.5 Then, applying Equation ( 5-18), each of the nbsame longitudinal overlaps in the same direction has the 
same associated probability of collision, determined by:  

 

 ( ) ( )0 1 x x
same y y z

y z

y z
P P S P

x x
λ λ
λ λ

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

 ( 5-19) 
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and similarly each of the nbopp longitudinal overlaps in the opposite direction have the same associated probability of 
collision, determined by: 
 

 ( ) ( )0 1
2 2

x x
opp y y z

y z

y z
P P S P

V V
λ λ
λ λ

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

. ( 5-20) 

 
5.4.6 The expected number of collisions in the same direction can be seen as the sum of nbsame Bernoulli 
random variables, with parameter Psame. In other words, the number of collisions is a binomial random variable, whose 
expectation corresponds to the product nbsame Psame. Therefore, the expected number of collisions in the same direction, 
E{Nbsame}, is given by: 
 

 { } ( ) ( )0 1 x x
same same y y z

y z

y z
E Nb nb P S P

x x
λ λ
λ λ

⎛ ⎞
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⎜ ⎟
⎝ ⎠

 ( 5-21) 

 
and similarly 
 

 { } ( ) ( )0 1 .
2 2

x x
opp opp y y z

y z

y z
E Nb nb P S P

V V
λ λ
λ λ

⎛ ⎞
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⎝ ⎠
 ( 5-22) 

 
5.4.7 The usual metric of collision risk is an expected number of fatal accidents per flying hour, where one 
collision accounts for two fatal accidents. Since one collision corresponds to two fatal accidents, the expected number 
of fatal accidents per flying hour for aircraft in the same direction, Nac,same, is given by: 
 

 ( ) ( ),
2

0 1same x x
ac same y y z

y z

y znb
N P S P

F x x
λ λ
λ λ

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
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 ( 5-23) 

 
and similarly, for aircraft in the opposite direction:  
 

 ( ) ( ),

2
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2 2
opp x x

ac opp y y z
y z

nb y z
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F V V
λ λ
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⎛ ⎞
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 ( 5-24) 

 
5.4.8 Let Πx(same) denote the probability that one aircraft is in longitudinal overlap with another aircraft in the 
same direction at any time. Then Πx(same) can be estimated as the ratio of the total time spent by all aircraft in 
longitudinal overlap in the same direction, divided by the total flight time. The total flight time spent by all aircraft in 

longitudinal overlap in the same direction is estimated as 22 x
samenb

x
λ

× (recall that all longitudinal overlaps in the same 

direction are assigned the same duration 
2 x

x
λ

) so that: 
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F

λ
×

Π =  ( 5-25) 

 
and similarly 
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2

( )
x

opp

x

nb
Vopp

F

λ
×

Π = . ( 5-26) 

 
5.4.9 Inserting Equation ( 5-25) into Equation ( 5-23) the following is finally obtained:  
 

 ( ) ( ), ( ) 0
2 2 2ac same x y y z

x y z

x y z
N same P S P

λ λ λ

⎛ ⎞
⎜ ⎟= Π + +
⎜ ⎟
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 ( 5-27) 

 
and similarly 
 

 ( ) ( ), ( ) 0 .
2 2ac opp x y y z

x y z

y zVN opp P S P
λ λ λ

⎛ ⎞
= Π + +⎜ ⎟⎜ ⎟

⎝ ⎠
 ( 5-28) 

 
5.4.10 These are the fundamental equations of the Reich model for same- and opposite-direction parallel routes 
respectively, expressed in terms of proportion of time in longitudinal overlap. In practice the only available data for 
estimating Πx(same) and Πx(opp) consists of flight plan archives. Instead of counting events involving longitudinal 
overlap, it is more convenient to count proximate events, which correspond to pairs of aircraft which are longitudinally 
within Sx (set at 120 NM in Chapter 10, Reference 11). Assuming that the longitudinal distance between the aircraft in a 
pair is uniformly distributed within the interval [ ], ,x xS S−  the probability of longitudinal overlap conditioned on a 

proximate event equals 
2
2

x x

x xS S
λ λ

= . 

 
5.4.11 Therefore, if Πprox(same) and Πprox(opp) denote the probability for a pair of aircraft to be longitudinally 

within Sx, then ( ) ( )x
x prox

x

same same
S
λ

Π = Π and ( ) ( )x
x prox

x

opp opp
S
λ

Π = Π are obtained such that Equations ( 5-27) and 

( 5-28) become: 
 

 ( ) ( ), ( ) 0
2 2 2

x
ac same proxx y y z

x x y z

x y z
N same P S P

S
λ

λ λ λ

⎛ ⎞
⎜ ⎟= Π + +
⎜ ⎟
⎝ ⎠

 (5-29) 

 
and 
 

 ( ) ( ), ( ) 0 .
2 2

x
ac opp prox y y z

x x y z

y zVN opp P S P
S
λ

λ λ λ

⎛ ⎞
= Π + +⎜ ⎟⎜ ⎟

⎝ ⎠
 (5-30) 

 
5.4.12 In Chapter 10, References 8 and 11 , the estimation of ( )prox sameΠ  and ( )prox oppΠ is made by counting 
in a flight plan data sample twice the number of “proximate pairs” and dividing by the overall number of aircraft. This 
approximate value is referred to as the occupancy and is denoted as sE  for the same direction and oE  for the opposite 
direction. Aggregating Equations ( 5-29) and ( 5-30) into a combined risk estimate, the following is obtained: 
 

 ( ) ( )0 .
2 2 2 2 2

x
ac y y z s o

x x y z x y z

x y z y zVN P S P E E
S
λ

λ λ λ λ λ λ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= + + + + +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
 (5-31) 
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5.5    RISK ASSESSMENT BASED ON 
THE FREQUENCY OF PASSING EVENTS 

 
5.5.1 Equations ( 5-27) and ( 5-28) have an equivalent formulation in terms of the frequency of passing events. A 
passing frequency is an expected number of longitudinal overlaps experienced by an aircraft during one flying hour. 
Denoting by Nx(same) and Nx(opp) the passing frequency in the same direction and opposite direction, respectively and 
keeping the same notation as in 5.4, Nx(same) can be estimated as the ratio of the overall number of longitudinal 
overlaps experienced by all aircraft in the same direction (one overlap being experienced by two aircraft) divided by the 
total flight time. This gives: 
 

 
2

( ) same
x

nb
N same

F
=  (5-32) 

 
and 
 

 
2

( ) .opp
x

nb
N opp

F
=  (5-33) 

 
5.5.2 By inserting Equation ( 5-32) into Equation ( 5-23), the following is obtained: 
 

 ( ) ( ), ( ) 0 1 x x
ac same x y y z

y z

y z
N N same P S P

x x
λ λ
λ λ

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

 (5-34) 

 
and similarly 
 

 ( ) ( ), ( ) 0 1 .
2 2

x x
ac opp x y y z

y z

y z
N N opp P S P

V V
λ λ
λ λ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
 (5-35) 

 
These are the fundamental equations of the Reich model for same- and opposite-direction parallel routes, expressed in 
terms of passing frequency. 
 
 
 
 

______________________ 
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Chapter 6 
 

VERTICAL COLLISION RISK MODELLING  
 
 
 

6.1    VERTICAL CRM FOR AIRCRAFT ON THE SAME ROUTE  
AT ADJACENT FLIGHT LEVELS 

 
6.1.1 This case is completely similar to the lateral collision risk for aircraft on parallel routes developed in 
Chapter  5 except that the lateral and the vertical axis are now permuted. For example, the lateral separation term Sy 
is replaced by a vertical separation term Sz, and the term Py.(Sy) which represented the probability for two aircraft 
laterally separated by Sy to be in lateral overlap is now replaced by Pz.(Sz) which represents the probability for two 
aircraft vertically separated by Sz to be in vertical overlap. Similarly Pz.(0) is replaced by Py.(0) and more generally 
the indices z and y are permuted. Equation ( 5-18) which accounted for the probability of collision for a pair of 
aircraft in longitudinal overlap is now replaced by: 
 

 ( ) ( )Pr 0 1 .x x
y z z

y z

y z
P P S

x x
λ λ
λ λ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
 ( 6-1) 

 
6.1.2 Similarly, Equations ( 5-29) and ( 5-30) which give the risk estimate as a function of the occupancy for the 
same and opposite directions are replaced by: 
 

 ( ) ( ), ( ) 0
2 2 2

x
ac same y z z

x x y z

x y z
N E same P P S

S
λ
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 ( 6-2) 

 
and 
 

 ( ) ( ), ( ) 0 .
2 2

x
ac opp y z z

x x y z

y zVN E opp P P S
S
λ

λ λ λ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
 ( 6-3) 

 
6.1.3 In addition, Equations ( 5-34) and ( 5-35) which give the risk estimate as a function of the frequency of 
passing events for the same and opposite directions are now replaced by: 
 

 ( ) ( ), ( ) 0 1 x x
ac same x y z z

y z

y z
N N same P P S

x x
λ λ
λ λ

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

 ( 6-4) 

 
and 
 

 ( ) ( ), ( ) 0 1 .
2 2

x x
ac opp x y z z

y z

y z
N N opp P P S

V V
λ λ
λ λ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
 ( 6-5) 

 
6.1.4 Equations ( 6-2) to ( 6-5) give the analytical expressions of the Reich model for vertical collision risk in the 
same and opposite directions. Next the crossing routes case is considered. 
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6.2    NOTATION AND ASSUMPTIONS FOR CROSSING ROUTES 
 
6.2.1 The main difference with the parallel routes model is that the error terms are no longer decoupled in the 
three dimensions, but only in the vertical and horizontal. Two steady aircraft on two crossing routes are considered. Sz 
denotes the vertical separation of the two routes. It is assumed that the two aircraft will overlap in the horizontal plane 
during the flight time on their routes, and tinit and tend denote the beginning and the end of their horizontal overlap. 
Recall (see Figure 6-1) that a horizontal overlap corresponds to an overlap in the horizontal plane of the two cylinders 
associated with each aircraft. 
 
6.2.2 To determine the probability of collision for the two aircraft between tinit and tend, as in the parallel routes 
case of Chapter 4, a reference frame centred on one of the aircraft is taken, such that a collision corresponds to the 
situation that the relative position between the aircraft belongs to the cylinder shown in Figure 6-2. (Xt,Vt) continues to 
denote the couple made up of the relative position and the relative speed (both of them being three-dimensional) for the 
pair of aircraft, and ft denotes the joint probability density function of this couple, conditioned on the pair being in 
horizontal overlap. 
 
 
 

 
Figure 6-1.    Horizontal overlap 

Horizontal overlap
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Figure 6-2.    Reference frame centred on one aircraft 

 
 
 
6.2.3 The assumptions are the same as for the parallel routes case, but when considering the distributions of the 
horizontal terms, there is no decoupling into the longitudinal and lateral dimensions. Rather they are kept together in 
the joint distribution. First, it is assumed that the relative speeds and positions are independent in the horizontal and 
vertical dimensions. If ( , , )X x y z=  denotes the three components of the relative position and ( , , )V x y z= denotes the 
three components of the relative speed, the joint probability density function ( ),tf X V can be written as the product of 
two factors: 
 
 ( ) , , , , , ,, ( , , , ) ( , ).t x y x y t z z tf X V f x y x y f z z=  ( 6-6) 
 
6.2.4 Secondly, as for the same/parallel routes case, it is assumed that the relative speed and position in the 
vertical dimension correspond to a “steady state” independent of the time. This means that when the (position, speed) 
densities are decoupled as: 
 

 
( ) ( ), , , , , , ,

, ,

( , , , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( ) ( )
t t t t t tx x y y t x y t t t t t tx y x y

z z t z t tz z

f x y x y f x y x y f x y x y x y x y

f z z f z f z z z z

= = = =

= = =
 ( 6-7) 

 
the densities ( )zf z  and ( )t tz zf z z z z= =  no longer depend on the time. 
 
6.2.5 The probability density functions defined in Equation ( 6-7) are: 
 
 a) ( ) ( )( ), , ,

t tx y t tf x y x y=  is the probability density function of the relative horizontal position at time t, 
and ( ) ( ) ( ) ( )( ), , , , , ,

t t t t t t t tx y x yf x y x y x y x y= =  is the probability density function of the relative 
horizontal speed at time t conditional on the relative horizontal position at time t. 

 
 b) zf  is the probability density function of the relative vertical position at any time, and 

( )t tz zf z z z z= =  is the probability density function of the relative vertical speed at any time t 
conditional on the relative vertical position at the same time t.  

Aircraft 1

y

x

z

1
(- 0 )λ λxy z, ,

( 0 )λ λxy z, ,-

( 0 )λ λxy z, ,

(- 0 )λ λxy z, ,-
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6.2.6 As for the same/parallel routes case, the key term in the Reich model is the probability of collision during 
a horizontal overlap. First this term is determined, which is denoted as Pr. Again two steps are followed: first an 
analytical expression is derived for Pr and then that expression is simplified with the help of additional approximations. 
 
 

Analytical derivation of Pr 
 
6.2.7 Pr represents the probability of collision during the time interval [tinit,tend] of a horizontal overlap. Here 
also two cases are distinguished: 
 
 a) At tinit, the two aircraft are in vertical overlap so that the collision corresponds to a “side-to-side” 

collision. 
 
 b) At tinit, the two aircraft are not in vertical overlap, but this overlap happens at some time during 

[tinit,tend]. The collision is then a “top-to-bottom” type of collision. 
 
6.2.8 P1 and P2 denote the probability of collision corresponding to the first and second case respectively. The 

first case is the easier to derive. The probability to be in vertical overlap at time initt , ( ) ,
z

z

z
z

f z dz
λ

λ=−
∫  is again denoted by 

Pz(Sz). The probability of collision corresponding to the first case is therefore given by: 
 
 1 ( ).z zP P S=  ( 6-8) 
 
6.2.9 Figure 6-3 illustrates the two possibilities for a scenario of “top-to-bottom” collision corresponding to the 
second case. The cylinder is similar to the one represented in Figure 6-2. Notice that for the two possibilities the 
horizontal component of Xt remains within λxy from the centre of the cylinder since the pair of aircraft is assumed to be 
in horizontal overlap. 
 
6.2.10 The probability of collision P2 is then determined by using Equation ( 4-15) on the time interval [tinit,tend]: 
 

 
[ ]{ }

( ) ( )
2 Pr collision during ,

 with ( ) ( , )( )
end

init

init end

t

t
t

P t t

u du t f X V n V dV dS+

∂Ω

=

= Ψ Ψ = •∫ ∫∫ ∫∫∫
 ( 6-9) 

 
where the volume boundary ∂Ω corresponds to the top and bottom sides. Following the notation of Figure 6-3, indices 
1 and 1’ are assigned to the top and bottom of the cylinder such that ∂Ω corresponds to the union of the top and bottom 
1 and 1’. The integral Ψ(t) in Equation ( 6-9) is the sum of two integrals, one for the top and one for the bottom: 
 

 
( )
1 1'

( ) ( , )( )

( ) ( ).

tt f X V n V dV dS

t t

+

∂Ω

Ψ = •

= Ψ + Ψ

∫∫ ∫∫∫  ( 6-10) 

 
6.2.11 Starting with the first integral over the top of the cylinder, represented in grey in Figure 6-2, the inward 
normal vector is directed downward so that the dot product ( )n V

+
•  corresponds to z− . The following is obtained: 

 
 ( )

2 2 2
1

( , )

( ) ...
xy x y zx y

t z d
λ

−

+ ≤

Ψ = ∫∫ ∫∫ ∫ …  ( 6-11) 

 
where ...d  represents the product of the five infinitesimals    dx dy dx dy dz and the symbol (…) represents to the product: 
 
 ( ) ( ), , ,( , ) ( , ) ( , ) ( ) ( )

t t t t t tx y z z zz zx y x yf x y f x y x y f f zλ λ . 
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Figure 6-3.    Two top-to-bottom collision possibilities 

 
 
 
6.2.12 The following simplifications are then applied to Equation ( 6-11): 
 
 a) ( ), ,

,

( , ) ( , ) 1
t t t tx y x y

x y

f x y x y dxdy =∫∫  for all ( ), ;x y  

 
 b) ( )

2 2 2
, , 1

t t

xy

x y
x y

f x y dxdy
λ+ ≤

=∫∫  (since for all t within [ ],init endt t  the pair is in horizontal overlap); 

 

 c) { }( ) .t t z t t zz z
z

z f z z z dz E z zλ λ− −= = = =∫  

 
6.2.13 Thus, the following is obtained: 
 
 { }1( ) ( )t t z z zt E z z fλ λ−Ψ = =  ( 6-12) 
 
and similarly 
 
 { }1' ( ) ( ).t t z z zt E z z fλ λ+Ψ = = − −  ( 6-13) 
 
6.2.14 As for the same/parallel routes case, notice that 1( )tΨ and 1' ( )tΨ  do not depend on the time t since the 
conditional density ( )t t zz zf z z z λ= = is assumed to be time-independent. It can be concluded that: 
 
 ( )2  end initP t t= − Ψ  ( 6-14) 

'1

1

Xtinit

Xtinit
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with 
 
 { } { }( ) ( )t t z z z t t z z zE z z f E z z fλ λ λ λ− +Ψ = = + = − −  ( 6-15) 
 
and 
 
 ( )1 2Pr ( )z z end initP P P S t t= + = + − Ψ  ( 6-16) 
 
with Ψ given by Equation ( 6-16). Equation ( 6-16) is the analytical expression for the probability of collision during a 
horizontal overlap based on a minimum of simplifications. This expression can then be simplified by applying additional 
approximations. 
 
 

Simplification of Pr using additional approximations 
 
6.2.15 As in Chapter 5, 5.3.14 to 5.3.18, a first approximation in Equation ( 6-16) consists of replacing λz by zero 

such that fz.(λz) and fz.(–λz) can be approximated by fz.(0), and fz.(0) can be approximated by ( )
(0)

2
z z

z
z

P S
f

λ
≈ . Using the 

equality { } { } { }E v E v E v+ −+ = , Equation ( 6-15) becomes: 
 

 { } ( ) ( )0 .
2 2
z z z z

t t
z z

P S P SE z z z
λ λ

Ψ = = =  ( 6-17) 

 
Once more the attention of the reader is drawn to the fact that z represents the conditional expectation of the absolute 
value of the vertical speed at a fixed time, conditional on a vertical overlap happening at the same time. 
 
6.2.16 The average duration of a horizontal overlap is then estimated, which is the value that will be used for [tend 
– tinit]. vrel denotes the relative horizontal speed of the two aircraft. 
 
6.2.17 Figure 6-4 shows the trajectory of aircraft A2 in a reference frame fixed to aircraft A1 and oriented so as to 
make A2 move along the vertical axis. Denoting by u the lateral offset of A2 relative to A1, it can be seen that a 
necessary and sufficient condition for a horizontal overlap to take place in the course of time is that u has to belong to 
the interval [–λxy, λxy]. For a given u in this interval, the portion of the trajectory of A2 in horizontal overlap with A1 has 
length 2 22 .xyd uλ= −  

 
6.2.18 Assuming that the lateral offset of A2 relative to A1 can take any value uniformly in the range [–λxy, λxy], it 
can be seen that the average duration of an overlap is given by: 
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The fact that 
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u tdu
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π

−

⎛ ⎞− =⎜ ⎟
⎝ ⎠∫  has been used. 
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Figure 6-4.    The trajectory of aircraft A2 in a reference frame fixed to aircraft A1 

and oriented so as to make A2 move along the vertical axis 
 
 
 
6.2.19 Replacing (tend – tinit) by its expectation in Equation ( 6-16) and using Equation ( 6-17), the following is 
finally obtained: 
 

 { }Pr collision during a horizontal overlap ( ) 1 .
4

xy
z z

rel z

z
P S

v
λπ
λ

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 ( 6-19) 

 
Equation ( 6-19) gives the final value for the probability of collision during a horizontal overlap which will be used in 
the Reich model for crossing routes in 6.3. 
 
 
 

6.3    RISK ASSESSMENT BASED ON PASSING FREQUENCY OR  
PROPORTION OF TIME IN HORIZONTAL OVERLAP 

 
6.3.1 Let N(cross) be the passing frequency, i.e. the expected number of horizontal overlaps (one overlap being 
experienced by two aircraft) divided by the total flight time. It is given by: 

A2

A1

0 u

u

222 ud xy −= λ

λxy

λxy

–λxy
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2

( ) crossnb
N cross

F
=  (  6-20) 

 
where nbcross is the number of crossing events. 
 
6.3.2 By following the same approach as in Equation ( 5-23), the expected number of fatal accidents per flying 
hour, Nacc,cross, is given by: 
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 (  6-21) 

 
where Equations ( 6-20) and ( 6-19) have been used. The bottom line of Equation ( 6-21) is the fundamental equation of 
the Reich model for vertical collision risk on crossing routes, based on the passing frequency. 
 
6.3.3 Similarly, Π(cross) denotes the probability, taken over all aircraft pairs, of two aircraft having experienced 
horizontal overlap, i.e. the proportion of flight time when an aircraft is in horizontal overlap with another aircraft. It is 
given by: 
 

 

{ }2
( )

22 .

cross end init

xy
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nb E t t
cross

F

vnb
F
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 ( 6-22) 

 
6.3.4 Using this time Equations ( 6-19) and ( 6-22), Nacc,cross is expressed in terms of Π(cross) by: 
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F
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 ( 6-23) 

 
The bottom line of Equation ( 6-23) is the fundamental equation of the Reich model for vertical collision risk on 
crossing routes, based on the proportion of time in horizontal overlap. 
 
 
 
 

______________________ 
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Chapter 7 
 

LONGITUDINAL COLLISION RISK MODELLING  
FOR AIRCRAFT ON THE SAME ROUTE: 

DISTANCE-BASED SEPARATION 
 
 
 

7.1    INTRODUCTION 
 
7.1.1 This collision risk model is introduced in Attachment A to Appendix 5 of Doc 9689. The model considers 
a flow of consecutive aircraft on the same route at the same altitude in the same direction. The reporting period is 
denoted by T. τ is  the communication and controller intervention buffer. τ corresponds to the overall duration required 
by the controller to successfully issue a collision avoidance instruction. It includes the communication delay, the 
duration for issuing the ATC instruction and the duration necessary for the pilot to execute the manoeuvre. 
 
7.1.2 The difficulty with this collision risk model is estimating the probability of a pair of consecutive aircraft 
being in longitudinal overlap during their flight time. This probability is determined by reasoning as follows. For a pair 
of consecutive aircraft, the flight time is decomposed into consecutive time intervals of duration T. During each 
interval, the probability of longitudinal overlap is maximized if the two aircraft have simultaneously sent their position 
reports at the beginning of the time interval, at t = 0. This is because the position error is mainly due to the extrapolated 
speed error, so that it increases in the course of time. The probability is maximal if both aircraft send their reports 
simultaneously, since in that time the controller has to wait for T before receiving the next position report and deciding 
to issue a conflict avoidance clearance. This clearance will require an extra τ  for being applied. Therefore, if a 
longitudinal overlap happens during the time interval [0,T + τ], it cannot be avoided by the controller. 
 
 
 

7.2    NOTATION AND ASSUMPTIONS 
 
This “worst-case” scenario is the one which is conservatively assumed for estimating the probability of longitudinal 
overlap during a time interval of duration T + τ. U (s)  denotes the probability that a longitudinal overlap will occur 
between t = 0 and t = T + τ in this “worst-case scenario”, given that the initial separation between the aircraft is s. The 
assumptions are the same as for the same/opposite-direction Reich model. w(s) denotes the probability density function 
of the separation s between consecutive aircraft. Finally, the separation standard in use in the airspace is denoted by Sx. 
It follows from our “worst-case scenario” that for each time interval of duration T + τ, the probability for a pair of 
consecutive aircraft to experience a longitudinal overlap during this time interval is bounded by ( ) ( )U s w s ds∫ .  
 
 
 

7.3    DERIVATION OF THE COLLISION RISK 
 
7.3.1 The application is similar to the same-direction Reich model, based on the proportion of time in 
longitudinal overlap. In the current case, the lateral and vertical separation minima Sy and Sz are zero, since the two 
aircraft are on the same route and at the same altitude. Equation ( 5-27) becomes: 
 

 ( ) ( ), ( ) 0 0 .
2 2 2ac x x y z

x y z

x y z
N same P P

λ λ λ

⎛ ⎞
= Π + +⎜ ⎟⎜ ⎟

⎝ ⎠
 ( 7-1) 
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7.3.2 Here, Πx.(same) corresponds to the proportion of time that a typical aircraft is in longitudinal overlap with 
another aircraft on the same track and flight level, summed over all aircraft pairs. In order to estimate Πx.(same), a fixed 
route is considered and D denotes the average flying time to traverse the entire route. It is assumed that at any time 
there are N aircraft on the track, with aircraft constantly entering at one end and leaving at the other. As a period of 
observation, a sufficiently large time period for K N aircraft to have completed their flight on the route is considered, 
which represents a total number of flight hours of K N D. 
 
7.3.3 The K N consecutive aircraft can be seen as K N – 1 pairs of consecutive aircraft. For each such pair, the 
probability for the pair to have experienced a longitudinal overlap is determined as follows. For a pair of consecutive 
aircraft, the flight time D is split into consecutive time intervals of duration T + τ, and the probability of longitudinal 
overlap during each time interval is bounded by ( ) ( ) .U s w s ds∫  Using the inequality { } { }1 1 1Pr PrkA A A A∪ ∪ ≤ +…  

{ } { }2Pr Pr ,kA A+ +…  it can be seen that the probability for a pair to experience a longitudinal overlap during their 

flight time on the route is conservatively approximated as D
T

 times ( ) ( ) :U s w s ds∫  

 

 

{ }

[ ]{ }
Pr longitudinal overlap for a pair

Pr longitudinal overlap for a pair during 0,T

( ) ( ) .

P
D
T
D U s w s ds
T

τ

=

≤ +

≤ ∫

 ( 7-2) 

 
7.3.4 During the period of observation, the total flight time for the aircraft is equal to K N D, the total number 
of pairs of consecutive aircraft is K N – 1, and the expected time spent by all aircraft pairs in longitudinal overlap is 
given by 2δt (K N – 1) (Pr {longitudinal overlap for the pair}). As in the same/opposite-direction Reich model, the 

duration of a longitudinal overlap is approximated as 
2 xt

x
λ

δ ≈ . Here, it is possible to obtain an upper bound for ,tδ  by 

noticing that the longitudinal overlap occurs between time t = 0 and t = T + τ for a pair of aircraft initially separated by 

s. Then, assuming that s ≥ Sx, xS
x

T τ
≥

+
 (since x corresponds to the expected relative longitudinal speed conditional 

on a longitudinal overlap), which implies that 2( ) .x

x

t T
S
λδ τ≤ +  

 
7.3.5 It can be concluded that the proportion of time in longitudinal overlap is given by: 
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−
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∫
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 ( 7-3) 

 

Thus, a conservative estimate of the occupancy Πx.(same) is given by 4 ( ) ( ) .x

x

U s w s ds
S
λ

∫  

 
7.3.6 As a conclusion, the expected number of fatal accidents per flying hour is given by: 
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x

ac x y z
x x y z

x y z
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S
λ

λ λ λ

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫  ( 7-4) 

 
This is the fundamental equation of the distance-based longitudinal collision risk model that can be found in 
Attachment A to Appendix 5 of Doc 9689. 
 
 
 

7.4    AN ANALYTICAL ESTIMATION OF x  
 
7.4.1 In this section a method for analytically determining x  is presented, which can be found in Appendix 1 
of Doc 9689. The scenario is unchanged from the previous case. Let 0

1̂d  and 0
2d̂  be the nominal initial positions of the 

two aircraft, 0
1d  and 0

2d  their true initial positions, and 0 0
1 1 1̂
A d dε = −  and 0 0

2 2 2
ˆA d dε = −  the initial along-track errors 

(see Figure 7-1). 
 
 
7.4.2 Also let 1̂V  and 2̂V  be the nominal ground speeds of the two aircraft, V1 and V2 their true ground speeds, 
and 1 1 1̂v V V= −  and 2 2 2̂v V V= −  the difference between the true and the nominal ground speed. The true separation at 
time t = T + τ is given by: 
 

 
( )( ) ( )( )

( )( ) ( )( )

0 0
1 1 1 1 2 2 2 2

0 0
1 2 1 2 1 2 1 2

ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ

A A

A A

sep d V v T d V v T

d d V V T v v T

ε τ ε τ

τ ε ε τ

= + + + + − − − + +

⎡ ⎤ ⎡ ⎤= − + − + + − + − +⎣ ⎦⎣ ⎦

 ( 7-5) 

 
 
 
 

 
Figure 7-1.    A method for analytically determining x  
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where the deterministic terms and the non-deterministic terms have been grouped inside square brackets. The condition 
for a longitudinal overlap to have happened before t = T + τ is that sep ≤ λx and the absolute value of the relative speed 
is given by ( ) ( )1 2 1 2

ˆ ˆ .V V v v− + −  Therefore, the expectation of the absolute value of the longitudinal relative speed 
conditional on a longitudinal overlap is given by: 
 

 ( ) ( ) ( )( ) ( )( ){ }0 0
1 2 1 2 1 2 1 2 1 2 1 2

ˆ ˆˆ ˆ ˆ ˆ        A A
xx E V V v v v v T d d V V Tε ε τ λ τ⎡ ⎤= − + − − + − + ≤ − − + − +⎣ ⎦ . ( 7-6) 

 
7.4.3 Equation ( 7-6) allows x to be determined analytically once the probability distributions of the error terms 

1
Aε , 2

Aε , 1v  and v2 are known. 
 
 
 
 

______________________ 



 
 
 
 
 

49 

Chapter 8 
 

NON-STATIONARY COLLISION RISK MODELLING  
IN THE SAME AND OPPOSITE DIRECTIONS 

 
 
 

8.1    GENERAL INTRODUCTION TO NON-STATIONARY 
COLLISION RISK MODELS (CRMS) 

 
8.1.1 The CRMs introduced so far share some similarities in the sense that, for all of them, it is possible to 
derive a frequency of fatal accidents per flying hour as the product of two independent quantities: 
 
 a) one depending solely on the navigational performance in all three dimensions; and 
 
 b) one representing a frequency of horizontal overlaps per flying hour (or equivalently a probability for 

an individual aircraft to be in horizontal overlap). 
 
8.1.2 The first quantity can be seen as the “average collision risk” for a given pair of aircraft in horizontal overlap. 
It is remarkable that for all these CRMs, the risk of collision can be averaged in such a way. The reason why this is 
possible is that, for all these CRMs, the aircraft are assumed to have reached a “steady-state” distribution of position errors 
in the vertical dimension, and also in the lateral dimension for parallel routes. In other words, it is possible to simplify the 
expression of the collision risk as an average risk per overlap times a frequency of overlap because the assumptions used 
require that the distribution of the position errors in one or two dimensions be independent of time. 
 
8.1.3 In this chapter and in Chapter 9, two collision risk models (one for the same/opposite-direction case and one 
for the crossing case) are introduced, which apply to a pair of aircraft and which do not require any assumption on the time 
independence of the individual aircraft position or speed errors. In mathematical terminology the stochastic process of the 
relative position or speed is not required to be stationary in any dimension. Therefore, the two collision risk models can 
model any operational situation: aircraft are allowed to have vertical evolution, to execute manoeuvres, etc. 
 
8.1.4 The benefit of these two collision risk models is that they can be applied to any operational scenario. The 
drawback is that, instead of returning a global risk estimate in terms of frequency of fatal accidents per flying hour, 
they return a probability of collision for an individual pair of aircraft in a predetermined scenario. Put differently, our 
two CRMs are more adapted to the risk assessment for one given hazard scenario rather than to the aggregation of all 
possible scenarios of error into a global distribution of position errors, as was done in the previous CRMs. 
 
8.1.5 In this chapter the collision risk model for a pair of aircraft in the same or opposite direction is introduced. 
The collision risk model for crossing routes will be introduced in Chapter 9. First the model for the most general 
application, making as few assumptions as possible, is presented and then it is shown how this general model can be 
simplified by adding further assumptions. 
 
 
 

8.2    NOTATION AND ASSUMPTIONS FOR THE SAME/PARALLEL ROUTES CRM  
 
8.2.1 The configuration of the routes is the same as in Chapter  5. As in Chapter 5, Figure 5-4, Sy is the lateral 
separation between two routes, and Sy = 0 corresponds to both aircraft on the same route. The aim is to determine the 
risk of collision between the two aircraft during a given time interval [t0,t1]. As in the parallel routes Reich model, a 
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reference frame centred on one of the aircraft is taken so that a collision corresponds to both aircraft inside the box 
shown in Chapter 5, Figure 5-2. Again (Xt,Vt) is the couple of the relative position and the relative speed (both of them 
being three-dimensional) for the pair of aircraft, and ft is the joint probability density function of this couple. It is 
assumed again that the relative position and speed components are independent in all three dimensions, such that: 
 
 ( ) , , , , , ,, ( , ) ( , ) ( , ).t x x t y y t z z tf X V f x x f y y f z z=  ( 8-1) 
 
8.2.2 However, here no assumption is made on a steady-state distribution of the lateral and vertical relative 
position so that the distributions of the components are now given by: 
 

 
, ,

, ,

, ,

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( ).

t t t

t t t

t t t

x x t x t t tx x

y y t y t t ty y

z z t z t t tz z

f x x f x x f x x x x

f y y f y y f y y y y

f z z f z z f z z z z

= = = =

= = = =

= = = =

 ( 8-2) 

 
The probability density functions defined in Equation ( 8-2) are the same as in Equation ( 5-2) for the parallel routes 
Reich model, except for fzt (zt = z) and fyt (yt = y) which now depend on time t. 
 
 

8.3    DERIVATION OF THE COLLISION RISK MODEL 
 
8.3.1 The main approximation made in this non-stationary collision risk model is that the box Ω is sufficiently 
small to justify that, when Xt is inside ∂Ω (the boundary of Ω), Xt can be approximated by the zero vector (0,0,0). 
 
8.3.2 It is assumed that at the initial time t0 the two aircraft are not in collision, so Xt0 is outside Ω, this being a 
necessary assumption for the application of Equation ( 4-15). By approximating the components of Xt by zero when Xt is 
inside Ω, Equation ( 4-15) becomes: 
 

 

{ } ( )

( )

( ) ( ) ( )
( )

( ) ( ) ( )

1

0

0 1

, , , ,

, ,

Pr collision during [ , ]  

with ( ) ( , )( )

( ) ( )

0 0 (0) ( 0)

t ttt t t t

t ttt t t t

t

t

t

x yx x y y
x y z x y z

x yx x y y
x y z

t t t dt

t f X V n V dV dS

n V f x f x x f y f y y d dS

n V f f x f f y d

+

∂Ω

+

∈∂Ω

+

= Ψ

Ψ = •

⎛ ⎞
= •⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

≈ •⎜⎜
⎝

∫

∫∫ ∫∫∫

∫∫ ∫∫∫

∫∫∫

…

…
( ), ,

.
x y z

dS
∈∂Ω

⎟⎟
⎠

∫∫

 ( 8-3) 

 
8.3.3 The boundary, ∂Ω, is composed of the six faces of the box. Ψ(t) in Equation ( 8-3) is decomposed as the 
sum of six integrals, one for each side. As in Chapter 5, Figure 5-3, indices 1 and 1’ are assigned to the top and bottom 
sides, and 2 and 2’ to the right and left sides. Finally indices 3 and 3’ are assigned to the rear and front sides, and I1, I1', 
I2, I2', I3, and I3' are the six integrals. 
 
8.3.4 For the top of the box one obtains: 
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 ( 8-4) 
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where ( 0) 1
t tx x

x

f x dx
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=⎜ ⎟
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∫ , ( 0) 1

t ty y
y
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0
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f
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λ

≤
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8.3.5 Similarly, one finds that: 
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8.3.6 In a similar way, one finds that: 
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and  
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Pr
( ) ( ) Pr Pr 0 .

2
t x

t y t z t t
x

x
I t I t y z E x x

λ
λ λ

λ
≤
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8.3.7 In conclusion, the probability of collision in the time interval [t0,t1] is given by: 
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 ( 8-8) 

 
 
 

8.4    A SIMPLIFIED VERSION OF THE COLLISION RISK MODEL 
FOR PARALLEL ROUTES 

 
Equation ( 8-8) gives the most general form of the non-stationary collision risk model, where no assumption is made on 
a “steady-state” distribution of any quantity. If, as in the Reich model for parallel routes, it is assumed that both the 
speed terms and the lateral and vertical position components have reached their steady-state distribution, Equation ( 8-8) 
simplifies to: 
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 ( 8-9) 
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where the quantities z , y  and x  are defined as in Chapter 5, 5.3.14 to 5.3.18. This equation is more tractable if the 
factor { }Pr t xx λ≤  is replaced by 2 (0),

tx xfλ  so that: 
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∫
 ( 8-10) 
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53 

Chapter 9 
 

NON-STATIONARY COLLISION RISK MODELLING  
FOR CROSSING ROUTES 

 
 
 

9.1    NOTATION AND ASSUMPTIONS 
 
9.1.1 Two aircraft with assigned crossing routes are considered with the aim of determining the risk of collision 
between the two aircraft during a given time interval [t0,t1]. As in the crossing routes Reich model, a reference frame 
centred on one of the aircraft is taken such that the collision corresponds to the situation where the relative position 
between the aircraft is inside the cylinder shown in Chapter 6, Figure 6-2. Again (Xt,Vt) is the couple made up of the 
relative position and the relative speed (both of them being three-dimensional) for the pair of aircraft, and ft is the joint 
probability density function of this couple. It is also assumed that the relative speeds and positions are again independent 
in the horizontal and vertical dimensions, i.e.: 
 
 ( ) , , , , , ,, ( , , , ) ( , )t x y x y t z z tf X V f x y x y f z z= . ( 9-1) 
 
9.1.2 However, here no assumption is made on a steady-state distribution of the vertical relative position. The 
joint distributions of the relative position and speed are given by: 
 

 
( ) ( ), , , , , , ,

, ,

( , , , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
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t t t

x y x y t x y t t t t t tx y x y
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f x y x y f x y x y f x y x y x y x y

f z z f z z f z z z z

= = × = =

= = = =
 ( 9-2) 

 
The probability density functions defined in Equation ( 9-2) are the same as for the crossing routes Reich model, except 
for fzt (zt = z) which is the probability density function of the relative vertical position error at time t. 
 
 
 
 

9.2    DERIVATION OF THE COLLISION RISK MODEL 
 
9.2.1 As for the previous non-stationary case in Chapter 8, 8.2, the main approximation made in this non-
stationary collision risk model is that cylinder Ω is sufficiently small to justify that, when Xt is inside Ω, Xt can be 
approximated by the zero vector (0,0,0). 
 
9.2.2 It is again assumed that at the initial time t0 the two aircraft are not in collision, so that Xt0 is outside Ω. By 
approximating the components of Xt by zero when Xt is inside Ω, Equation ( 4-15) becomes: 
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 ( 9-3) 

 
9.2.3 The boundary surface of Ω, ∂Ω, is decomposed into three parts: the top (having index 1), the bottom 
(having index 1’) and the side (having index 2). Ψ(t) in Equation ( 9-3) is decomposed as the sum of three integrals, one 
for each part. I1, I1' and I2 are these three integrals. 
 
9.2.4 For the top of the cylinder, 
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9.2.5 Similarly, 
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so that 
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 ( 9-6) 

 
9.2.6 For the integral over the side of the cylinder, 
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9.2.7 Returning to Equation ( 9-7) and using the result of Equation ( 9-8) the following is obtained: 
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Figure 9-1.    Integral over the side of the cylinder 
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9.2.8 Combining Equations ( 9-4), ( 9-5) and ( 9-7), it is found that: 
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9.2.9 vrel,t denotes the quantity { }2 2 ( , ) (0,0) and t t t t tE x y x y z+ = the quantity { }    0 .t tE z z =  Using Equation 

(9-10), the following is obtained for the probability of collision during the time interval [ ]0 1, :t t  
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9.2.10 The index t  in ,rel tv  and tz  refers to the fact that these two quantities represent expectations at time t  
conditional on the fact that an overlap happens at time t in the corresponding dimension. 
 
9.2.11 Equation ( 9-11) gives the probability of collision in the most general case. How the equation can be 
simplified if some further approximations are applied to the model will now be examined. 
 
 
 

9.3    SIMPLIFIED VERSIONS OF THE 
NON-STATIONARY COLLISION RISK MODEL 

 
9.3.1 The term ,rel tv is the expectation of the relative horizontal speed at time t conditional on a horizontal 
overlap at t. It can be approximated by the relative horizontal speed for the aircraft pair, denoted by vrel. Similarly, the 
term tz can be approximated by the absolute value of the vertical relative speed for the aircraft pair, denoted by .z   
 
9.3.2 If none of the aircraft are in vertical motion, the term { }Pr t zz λ≤ simplifies to Pz (Sz), where Sz is the 
vertical separation between the aircraft. Finally, if all the previous approximations are combined: 
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2 1 (0,0) .
2 t t

t
rel

xy z z x y
xy z t

zvP P S f dtπλ
π λ λ

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  ( 9-12) 

 
This is the usual expression for the non-stationary collision risk model for crossing routes. 

 
 

 
9.4    APPLICATION TO A COLLISION RISK MODEL 

IN AN ADS-C ENVIRONMENT 
 
9.4.1 The application presented in this section comes from the safety assessment performed in the context of the 
distance-based lateral separation for RNP k aircraft as specified in the Procedures for Air Navigation Services — Air 
Traffic Management (PANS-ATM, Doc 4444), 5.4.1.2.1.5.1: 
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 “For intersecting tracks, the entry points to and the exit points from the area in which the lateral distance 
between the tracks is less than the required minimum are termed lateral separation points. The area 
bounded by the lateral separation points is termed the area of conflict”. (See Figure 9-2.) 

 
The pertinent CRM is presented in Chapter 10, Reference 1. 
 
9.4.2 Proceeding as in the case of the distance-based longitudinal collision risk model, the risk of collision 
during a time interval that consists of the reporting period plus the communication and controller intervention buffer is 
estimated. This time interval is denoted by [t0,t1]. 
 
9.4.3 0

1̂d  and 0
2d̂  denote the nominal distances before the intersection at time 0t t=  of aircraft 1 and 2. 1

Aε  and 
2
Aε  denote the along-track errors and 1

Cε and 2
Cε the cross-track errors of the two aircraft. ( )Af x denotes the probability 

density functions of 1
Aε and 2

Aε  (assumed to have the same distribution) and ( )Cf x  the probability density functions of 
1
Cε  and 2

Cε  (also assumed to have the same distribution). It is assumed that the horizontal speeds of the two aircraft, 
denoted by V1 and V2, are constant during the time interval [t0,t1]. The coordinates of the actual positions of the two 
aircraft at time t are then given by: 
 

 
( ) ( )
( )

0
1 1 1 1 0

1 1

ˆ A

C

x t d V t t

y t

ε

ε

= − + + −

=
 ( 9-13) 

 
and 
 

 
( ) ( ) ( )

( ) ( ) ( )

0
2 2 2 2 2 0

0
2 2 2 2 2 0

ˆ cos sin cos

ˆ sin cos sin .

A C

A C

x t d V t t

y t d V t t

ε θ ε θ θ

ε θ ε θ θ

= − − − + −

= − − + + −
 ( 9-14) 

 
 
 

 
Figure 9-2.    Area of conflict 
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Note that the along-track and cross-track errors are assumed to be constant during the time interval [t0,t1], and positive, 
except for 2

Aε  which is negative in the configuration shown in Figure 9-3. 
 
9.4.4 The true difference in x-coordinates at time t is thus given by: 
 

 

( ) ( ) ( )
( )( )

( )

1 2

0 0
1 2 0 1 2 1 2 2

1 2 2

ˆ ˆcos cos cos sin

cos sin

A A C

A A C
x

x t x t x t

V V t t d d

D t

θ θ ε ε θ ε θ

ε ε θ ε θ

Δ ≡ −

= − − − + + − +

= + − +

 ( 9-15) 

 
where ( ) ( )( ) 0 0

1 2 0 1 2
ˆ ˆcos cosxD t V V t t d dθ θ= − − − +  is the nominal difference in x-coordinates at time t, given V1 and 

V2. 
 
9.4.5 Similarly, the true difference in y-coordinates at time t is given by: 
 

 

( ) ( ) ( )
( )

( )

1 2

0
2 0 2 1 2 2

1 2 2

ˆsin sin sin cos

sin cos

C A C

C A C
y

y t y t y t

V t t d

D t

θ θ ε ε θ ε θ

ε ε θ ε θ

Δ ≡ −

= − − + + − −

= + − −

 ( 9-16) 

 
where 
 
 ( ) ( ) 0

2 0 2
ˆsin sin .yD t V t t dθ θ= − − +  

 
 

 
Figure 9-3.    Depiction of along-track errors 
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9.4.6 In order to determine the quantity ( )
,

(0,0)
t tx yf of Equation ( 9-12) (which is the value of the probability 

density function associated with the two-dimensional relative position at (0,0)), the probability for the two-dimensional 
relative position ( )( ), ( )x t y tΔ Δ is now estimated to be in a small square of size 2h×2h: 
 

 

( ) ( ){ }

( ) ( ) ( )
( )

( )

( )
( )

( )

( )

1 2 21 2 2

2 2 1 2 2 1 2 2

sin coscos sin

2 2 1 1 2 1 2 1
cos sin sin cos

2
2

Pr  and 

d d d d

4

C A CA A C
yx

A C A A C C A C
x y

D t hD t h
A C A C C C A A

A C A C
D t h D t h

A
A C

P h y t h h x t h

f f f f

h f f

ε ε θ ε θε ε θ ε θ

ε ε ε ε θ ε θ ε ε θ ε θ

ε ε ε ε ε ε ε ε

ε ε

= + − += − − +

= − − − = + − −

= − ≤ Δ ≤ − ≤ Δ ≤

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟=

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

≈

∫ ∫ ∫ ∫

( ) ( )( ) ( )( )
2 2

2 2 2 2 2 2 2
,

cos sin sin cos d d .
A C

C A C A C A C
A x C yf D t f D t

ε ε

ε θ ε θ ε θ ε θ ε ε− − + −∫∫

 

 
9.4.7 This probability can also be approximated by ( )

,

24 (0,0)
t tx yh f for very small values of h. By identification, 

it can be concluded that: 
 
 ( ) ( ) ( ) ( )( ) ( )( )

2 2

, 2 2 2 2 2 2 2 2
,

(0,0) cos sin sin cos d d .
t t

A C

A C A C A C A C
x y A C A x C yf f f f D t f D t

ε ε

ε ε ε θ ε θ ε θ ε θ ε ε= − − + −∫∫  

 
9.4.8 Following Equation ( 9-12), the risk of collision for a pair of aircraft during the time interval [t0,t1] is then 
given by: 
 

 
( )

( ) ( ) ( )( ) ( )( )

1

0

2 2

2
,

, 2 2 2 2 2 2 2 2
,

2 1( ) (0,0)  with
2

(0) cos sin sin cos d d .

t t

t t
A C

t
rel

xy z z x y
xy z t

A C A C A C A C
x y A C A x C y

zvP P S f dt

f f f f D t f D t
ε ε

πλ
π λ λ

ε ε ε θ ε θ ε θ ε θ ε ε

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠

= − − + −

∫

∫∫
 ( 9-17) 

 
 
 
 

______________________ 
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