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To the pioneers of flight,
who made a dream of mankind come true.

To the pioneers in computer science,
who opened us new frontiers of innovation.



Foreword

Since the very beginning of manned flight more than hundred years ago, aero-
nautics was one of the most advanced fields for generating new technologies.
Requirements against safety, reliability, lowest weight, and pilot integration put the
highest demand on the engineers to find solutions in these conflicting areas.

The introduction of new navigation and air data sensors and power amplification
by pneumatic and hydraulic systems opened the arena for large aircraft and first
automated flight segments. After WWII, onboard computing opened the scope for
new support functions, auto flight systems, and many more capabilities of modern
aircraft. System integration became one of the key elements during design and
development of aircraft and step-by-step software design became one of the most
important areas in defining the functional structures of new aircraft. The art of
designing these aircraft underwent an evolutionary change toward software inte-
grated systems of systems. Today, we are at the threshold to highly automated and
unmanned autonomous systems that will pose even more emphasis on information
technology and pushing the limits to the highest criticality levels possible.

The Institute of Flight Systems at the German Aerospace Center (DLR) is a
leading research institution of flight sciences and airborne systems technologies
with strong links to industry and worldwide research. Our involvement in the most
advanced aircraft designs and our role in the development of future autonomous
systems and aeronautics regulations brought us early to investigate the impact of
new computing architectures like multi-core platforms, high-speed reliable net-
working, data sciences, and semantic infrastructures such as ontologies on airborne
systems. Safety critical systems will have to host real-time capable decision-making
software that is suited for highly automated verification and qualification.

Information science has developed in the past years with a stunning speed and it
is now high time that the links between this science and modern aeronautics are
investigated and discussed.
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This book is providing a profound compilation of chapters from experts of
information communication technologies and aeronautics who share their view
about the advances in aeronautical informatics. I would like to thank the authors to
present this book which closes an important gap in the literature.

Braunschweig, Germany
February 2018

Stefan Levedag
Director, Institute of Flight Systems
German Aerospace Center (DLR)
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Preface

Aeronautical informatics is a cross-disciplinary field that involves aeronautics and
computer science. We are witnessing the evolution of Information and
Communication Technologies (ICT) through various disruptive innovations that
create new paradigms and change our lives. The impact of this evolution is evident
on many technical systems. Industry 4.0 refers to this evolution and designates the
new era with the keywords “smart” and “connected”.

The impact of ICT on how we design and fly aircraft is observable with respect
to the progress in aeronautical informatics. In this book, we tried to have a closer
look into the advances in this area. The book is organized in Introduction,
Information and Communication Technologies Supporting Flight 4.0, and The
Challenges sections.

The Introduction encompasses Chap. 1 from Umut Durak where he tries to
establish a base for the book by elaborating the evolution of aeronautics parallel
with the other technical domains. Thereby, in relation to advances in ICT, he
introduces the fourth revolution in aeronautics as Flight 4.0.

In Information and Communication Technologies Supporting Flight 4.0, there
are six chapters that address six fields of advancement. Falco K. Bapp and Jürgen
Becker present advances in avionic platforms with the breakthrough in multi-core
systems in Chap. 2. Emerging trends in avionics networking are addressed in
Chap. 3 by Andreas Reinhardt and Aysegul Aglargoz. In Chap. 4, Christos P.
Antonopoulos, Konstantinos Antonopoulos, and Nikolaos S. Voros discuss Internet
of Things and Service-Oriented Architecture as the infrastructures for Flight 4.0.
Gerrit Burmester, Hui Ma, Dietrich Steinmetz, and Sven Hartmannn present big
data and data analytics concepts applied to aeronautics in Chap. 5. In Chap. 6,
Carlos Insaurralde and Erik Blasch address utilization of ontologies in aeronautics.
The last contribution of this section is Chap. 7 from Shafagh Jafer, Umut Durak,
Hakan Aydemir, Richard Ruff, and Thorsten Pawletta. They review the advances in
software engineering and their reflections in aeronautics.

The Challenges section is composed of three chapters. In Chap. 8, Christoph
Torens and Johann C. Dauer and Florian Adolf discuss autonomy and corre-
sponding safety issues particularly in unmanned aircraft domain. Reinhard
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Wilhelm, Jan Reineke, and Simon Wegener extend the section with Chap. 9 that
elaborates challenges in tackling the real-time requirements as we move toward
multi-core avionic platforms. In the last chapter, Ella M. Atkins proposes an
expansion to aerospace engineering curricular in order to incorporate aeronautical
informatics.

We believe that the notable contribution of this book is highlighting aeronautical
informatics as a field of research by providing a comprehensive array of chapters
that render various recent advancements in information and communication tech-
nologies and their effect on aeronautics. It emphasizes the change in technology
landscape of aeronautics as revolutionary. The upcoming era of “smart” and
“connected” flight is named as Flight 4.0.

We invite the reader to this unique collection from eminent contributors who
elaborate the advancement in their respective fields and explore their applications in
aeronautics. We further encourage the reader to contribute for the development of
this flourishing multidisciplinary field, aeronautical informatics.

Braunschweig, Germany Umut Durak
Karlsruhe, Germany Jürgen Becker
Clausthal-Zellerfeld, Germany Sven Hartmann
Antirio, Greece Nikolaos S. Voros
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Introduction



Chapter 1
Flight 4.0: The Changing Technology
Landscape of Aeronautics

Umut Durak

Abstract This chapter draws the readers into a comprehensive discussion about the
advances in Information and Communication Technologies (ICT) and their influ-
ence on the technology landscape of aeronautics. It gives a rough overview of the
advances in technical systems from the industrial revolution up until Industry 4.0 and
elaborates the reflection of these advancements in aeronautics from the pioneers era
toward Flight 4.0. It briefly describes various recent fields of research in ICT such as
Cyber-Physical Systems (CPS), Internet of Things (IoT), wireless networks, multi-
core architectures, Service-Oriented Architecture (SOA), cloud computing, big data,
and modern software engineering methodologies as the parts of future aeronautical
engineering body of knowledge. Thereafter, it describes aeronautical informatics as
an establishing interdisciplinary field of study of applied informatics and aeronautics.

1.1 Aeronautics: The Study of Flight

Aeronautics is defined as the study or the practice of all aspects of flight through the
air [1]. It also refers to design, construction, and operation of aircraft [2]. Aeronauti-
cal engineering is the corresponding engineering discipline. It applies the scientific
principles of flight and engineering in design and development of aircraft and its
operation. Aerospace engineering extends the limits of aeronautical engineeringwith
including space flight and astronautics into its scope.

Encyclopedia of Aerospace Engineering from Wiley documents the aspiration
of the largest professional organizations of aeronautics, namely Royal Aeronautical
Society (RAeS) and the American Institute of Aeronautics and Astronautics (AIAA)
in seeking the bodyof aerospace knowledge [3]. This large-scale reference that covers
entire range of scientific and engineering principles of aeronautics and astronautics
is organized in eight volumes: fluid dynamics and aerothermodynamics, propul-
sion and power, structural technology, materials technology, dynamics and control,

U. Durak (B)
German Aerospace Center (DLR), Braunschweig, Germany
e-mail: umut.durak@dlr.de
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4 U. Durak

environmental impact, manufacturing and operations, vehicle design and systems
engineering. This classification provides a comprehensive list for the fields of study
in aeronautics in the classical sense.

1.2 The Evolution of Aeronautics

The term technical systems refers to all man-made artifacts, objects, products, tools,
and technical works that are a result of a manufacturing activity [4]. Hubka describes
evolution of technical systems starting from the early times of machines where each
machine is perceived individually as awhole. The studies about the commonelements
ofmachines startedwith the establishment of polytechnical schools in late eighteenth
century. Nineteenth century brought the systematic studies of machine elements and
mechanisms. The underlying commonalities and patterns across various types of
machines ranging from weapons to mining machines and steam engines to aircraft
were studied. Engineering is established as the study of machines.

Engineering enabled the age of machinery, the transition from manpower to
machine power in various areas. Its effect in production of goods is accepted as
a revolution. The transition from hand production methods to machine production
is named as industry revolution. Engineering started the pioneers era in aeronautics.
Otto Lilienthal [5] as one of the most famous pioneers of this era applied the engi-
neering principles to unpowered airplanes and made the fist successful flight with
his glider. The next remarkable step was the success of Wright brothers [6] with the
powered aircraft. Among others, these pioneers paved the way to the establishment
of aircraft industry at the beginning of twentieth century.

Rapid introduction of machines in wide range of application fields created an
enormously increasing demand on automating them. Utilization of the electric, pneu-
matic, and hydraulic power provided the necessary means. The machines became to
be named as systems which are assemblies of numerous elements with the aim to ful-
fill dedicated function or provide capabilities. The term “technical system” emerged
as the recognition of machines as systems. In production, this leap is named as the
second industrial revolution and symbolized by mass production. This effected also
the production techniques of aircraft. The period between the world wars is named
as the golden age of aviation [7]. This was the time where the progress from slow
production of wood and fabric aircraft to streamlined production of metal aircraft
occurred. Flying stepped toward means of transportation from experimental activity.
Aircraft such as Douglas DC-3 marked a turning point air transport in the 1930s
and 1940s. It was the time of expansion for commercial airlines companies. Besides
revolutionary advances in aerodynamics, the innovation in aeronautical technology
rendered various components and aspects of aircraft. Aligned with the advances in
technical systems in general, the automation requirements hit the aircraft. The first
automatic flight control systems were developed during this period. MacRuer and
Graham [8] report that by the late 40s the technology level for all electric control
from sensors to servos was already reached. The advances in hydraulics on the other
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Fig. 1.1 Airbus A320 glass cockpit

hand lead to successful implementations such as in De Havilland Comet 1 [9]. It was
the first commercial airliner powered by jet engines.

The next revolutionary step in the history of technical systems came with the rise
of computers. The introduction of computers or computing elements in technical
systems for enabling further automation characterized the third revolution. Computer
Numerical Control (CNC) machine tools, Supervisory Control and Data Acquisition
(SCADA), andComputer IntegratedManufacturing (CIM) became the fields of study
in production domain.

In aeronautics, it was the rise of avionics, or in other words aviation electronics.
Computers became the core elements of avionic suites where they are utilized for
functions such as flight control and monitoring, navigation or terrain avoidance.
Fly-by-wire flight control systems were introduced to convert control inputs from
the pilots to actuator commands to move the control surfaces via electronic means.
Computers are used not only for augmenting the pilot inputs for stabilization but
also for further automation tasks such as autopilots. Concorde can be referred as the
first civil aircraft with fly-by-wire system. In the late 80s, with the Airbus A320, the
disruptive capabilities such as high-level control laws in normal operation are started
to be provided by fly-by-wire systems [10]. The glass cockpits (Fig. 1.1) can also
be introduced as part of the computer revolution in aeronautics. Already in 70s, the
increasing level of complexity in aircraft resulted in hundreds of cockpit displays
which are meant to aid pilots for more efficient flight, and provide themwarnings and
cautions.When computers provided the information processing capabilities required
to fuse the data and generate condensed information for the displays, glass cockpits
were introduced as simplifiedmeans of flight data representation usingmultifunction
displays driven by onboard computers [11]. Further advances of the era include
Flight Management Systems (FMS) that provide enhanced in-flight automation and
pilot cockpit interactions [12] and warning systems such as Terrain Awareness and
Warning Systems (TAWS) or Traffic Collision Avoidance Systems (TCAS) [13].
Among all, fly-by-wire systems have kept a special position regarding their high
reliability requirements and redundancy approaches.
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1.3 On the Cusp of the Fourth Revolution

Today, we are discussing the fourth revolution in the history of technical systems.
It is characterized by the words “smart” and “connected”. While all previous efforts
were intending to automate individual technical systems, today the focus is on the
integration of all technical systems within a value chain into digital ecosystems. The
driving force of the change can be found in the disruptive innovations in Information
and Communication Technologies (ICT).

In his book The Innovators Dilemma, Christensen defines two types of tech-
nological change [14]. The first one sustains the rate of improvement in product
performance. It can be incremental or radical. The second one disrupts or redefines
the performance trajectories by creating a new product that provides performance in
other dimensions than the ones in main stream, and eventually lead to a new market.

The production domain named the fourth revolution as Industry 4.0. The final
report of the Industrie 4.0 Working Group sponsored by the Federal Ministry of
Education and Research in Germany lists the revolutions in ICT that brought radical
transformations [15]. Smart devices, miniaturization, and smart networks (cloud
computing) are introduced as the enablers of ubiquitous computing. It is argued that
cloud computing and services permit applying smart algorithms on large quantities
of diverse data (big data) collected from smart devices. Powerful microcomputers,
wirelessly networked among each others, and the Internet are presented as facilitator
for convergence of physical and cyberspace and Cyber-Physical Systems (CPS). The
new Internet Protocol IPv6 is named as the enabler of creating Internet of Things
(IoT) and services that is composed of network resources, information, objects, and
people. The fourth revolution in production is explained as introducing the IoT and
services to create networks of smart machines and facilities, namely cyber-physical
productions systems that feature end-to-end ICT-based integration.

Aligned with Industry 4.0, Siemens introduced the fourth revolution of the infras-
tructure technology as follows [16]: The first one is described as brick and steel
infrastructure, whereas the second was (semi-) automated infrastructures such as
electric railways. The third revolution was named as intelligent infrastructure, e.g.,
fully automated buildings. They argue that the fourth revolution in infrastructure is
a kind of fully integrated intelligent infrastructure which is now being discussed as
smart cities. While there are various definitions for smart city, the common under-
standing is embracing pervasive and ubiquitous computing as well as embedding
digitally instrumented devices in urban environments to monitor, manage, and reg-
ulate city flows and processes [17].

Aeronautics is also on the cusp of the fourth revolution (Fig. 1.2). After realizing
far-reaching automation levels on aircraft, aeronautics domain is now looking at the
“smart” and “connected” flight. In the global scale, the Next Generation Air Trans-
portation System (NextGen) project of United States and Single European Sky ATM
Research (SESAR) have been looking into transforming the radar-based airspace to
a connected one which highly utilizes smart automation of connected entities [18–
20]. Almost a decade ago, the NextGen Integrated Plan [21] states that the approach
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Fig. 1.2 The four eras of flight

where ground-based radars track flyways and pass information from control center to
control center on the ground is becoming increasingly inefficient with increase of the
density of air traffic. It introduces the upcoming era with its bold recommendation to
utilize modern communication techniques, advanced computers, precision localiza-
tion throughGlobal Positioning System (GPS), andmodern computer-based decision
assistance programs. In the last decade, we encountered giant leaps in ICT, for exam-
ple CPS, IoT, service orientation, cloud computing, big data, and wireless networks.
They are now pushing the technologies related to flight further than this recommen-
dation and motivate us to name this upcoming fourth revolution in aeronautics as
Flight 4.0. It refers to changes in the way that we are doing things in aeronautics
from design, construction, to operation of aircraft. Sampigethaya and Poovendran
[22] claim that control of aircraft electrical,mechanical, structural, thermal, hydraulic
systems and processes, entertainment of passengers, coordination between aircraft
and ground stations, between pilots and air traffic depend on advances in ICT. This
can be extended to flight training and simulation by extrapolating the evolution of
flight simulators presented by Allerton [23].

1.4 ICT of the Fourth Revolution

CPS, IoT, wireless networks, services, cloud computing, and big data are some of
the terms that we hear more and more frequently. They are effecting our daily lives;
how we work, how we live, how we commute, or even how we sleep. Flight 4.0 is a
proposition that says these technologies will be changing how we fly.

CPS is defined as the integration of computation and physical processes [24]. It
stresses the challenges that emerge with the embedded systems and networks that
monitor and control the physical processes. It includes wide range from medical
devices to networked autonomous vehicles and networked building control systems
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to critical infrastructure control. CPS is claimed as vital for future of the flight
[22, 25]. The behavior of CPS is defined by both physical and cyber parts of the
system [26]. The physical part of CPS is named as physical plant which may include
mechanical parts, chemical processes, or human operators. Cyber part is composed
of computational platforms which consists of sensors, actuators and controllers, and
network fabric. The physical world of flight includes mechanical aircraft parts, pilot,
natural airspace, terrain, and all other man-made systems associated with aircraft
whereas cyber world encompasses avionic systems, sensors, and actuators as well as
the networking elements such as data buses. Aircraft is an extremely complex CPS
with many component interactions to control flight and provide rich functionality. A
single flight of an aircraft from a departure to an arrival gate, for example, involves
the utilization of actuators to move the control surfaces of the aircraft, cyber domain
interactions with ground, air, and space infrastructure, airborne sensing of natural
processes such as weather, wind, and wildlife, and human-in-the-loop interactions
such as between flight and ground crew [27].

Sampigethaya and Poovendran [22] provide a comprehensive categorization of
CPS in aeronautics. We would like to adapt this categorization in the following
paragraphs. They start with growth of cyber layer in aircraft where they stressed
the paradigm shift from federated and distributed onboard systems architectures to
Integrated Modular Avionics (IMA) which employs higher throughput multi-core,
multiprocessor systems. Chapter2 (Advances in Avionic Platforms: Multi-core Sys-
tems) from Bapp and Becker will be addressing this topic. The enhanced use of
wireless networking and data links enabled the integration of onboard, off-board,
space and ground elements. High, very high, and ultrahigh frequency radio links,
satellite links, and commercial wireless protocols, such as IEEE 802.11, are men-
tioned in this scope. The topic is further elaborated in Chap.3 (Emerging Trends in
Avionics Networking) by Reinhardt and Aglargoz.

Lee and Seshia introduce quadcopters as motivating examples for employing new
CPS based approaches [26] which employ systems modeling methodologies, formal
verification, simulation techniques, certification methods, and software engineering
processes to tackle the emerging challenges in systems design and development
[24]. Jafer and her colleagues broaden the discussion about software engineering
aspect in Chap.7 (Advances in Software Engineering and Aeronautics). Execution
time verification was introduced as one of the key challenges of CPS design and
development by Lee [24]. Wilhelm, Reineke, and Wegener in Chap.9 (Keeping up
with Real Time) address the timing issues in future avionics systems.

Cyber-physical integration in flight deck is another category. It stresses that the
data integration of airspace will lead to jointly performed flight deck operations such
as flight control and management or collision avoidance. On one hand, it will enable
further automation and autonomy that optimizes flightmanagement and control under
various physical constraints such as fuel or noise, on the other hand, it will transform
the pilot to an operator of complex network of software-based systems. Further the
inclusion of unmanned systems brings us to another level of complexity. In Chap. 6
(Ontologies in Aeronautics), Insaurralde and Blasch present the use of ontologies in
aeronautics for data integration and supporting decision-making.

http://dx.doi.org/10.1007/978-3-319-75058-3_2
http://dx.doi.org/10.1007/978-3-319-75058-3_3
http://dx.doi.org/10.1007/978-3-319-75058-3_7
http://dx.doi.org/10.1007/978-3-319-75058-3_9
http://dx.doi.org/10.1007/978-3-319-75058-3_6
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Automatic Dependent Surveillance Broadcast (ADS-B) is defined as function on
an aircraft or a surface vehicle that periodically broadcasts its state vector (horizon-
tal and vertical position and velocity) along with some other information such as
heading or capability codes [28]. It is a part of the aforementioned NextGen and
SESAR projects. ADS-B consists of ADS-B Out which refers to aircraft broad-
casting and ADS-B In which refers to aircraft receiving another aircraft’s ADS-B
Out information as well as the ADS-B In services provided by ground systems
such as Traffic Information Service Broadcast (TIS-B) and Flight Information Ser-
vice Broadcast (FIS-B) [29]. While TIS-B includes traffic information within the
vicinity, FIS - B includes various weather and flight information such as Aviation
RoutineWeather Reports (METARs) or Notice to Airmen (NOTAM). Sampigethaya
and Poovendran introduce an ADS-B based cyber-physical integration. In ADS-B
based air-to-ground networks, effective sharing of weather and traffic information
provides means for Trajectory-Based Operations (TBO) [30] which means manag-
ing and optimizing individual aircraft precisely in three spatial dimensions and time.
With ADS-B based air-to-air networks, it is argued that the ground-independent
traffic control tasks such as inter-aircraft spacing may be accomplished by onboard
means, which may eventually lead to formation flight [31] type visionary concepts.

Following the ideas from computer augmented environments [32], ubiquitous
computing became popular starting from late 90s with a vision having transparent
availability of computing resources throughout the physical environment [33]. Ubiq-
uitous sensing supported this concept with providing a transparent sensing abilities
with network of sensors [34]. Radio-Frequency Identification (RFID) enabled the
smart identification, monitoring, and tracking of objects [35]. Advances in wireless
networking provided means for having transparent communication and information
sharing [36, 37]. Integrating the devices with the ability to measure, infer, and under-
stand environmental indicators in communicating-actuating networks is now creating
the Internet of Things, IoT [38]. Sensors and actuators as well as information and
communication system are invisibly embedded in the environment around us. Cloud
computing is envisioned as the virtual infrastructure for monitoring devices and stor-
age, analytics, visualization, and presentation with end-to-end services [39]. The
National Institute of Standard and Technologies (NIST) defines cloud computing as
a model that enables convenient, ubiquitous, on-demand access to share computing
resources which include not only networks, servers, and storage but also applications
and services [40]. The software architecture of IoT follows the Service-Oriented
Architecture (SOA) [41]. SOA promotes integration through a set of services which
are programming language and platform independent software components with
well-defined interfaces [42]. Voros and his colleagues are elaborating IoT and SOA
further in Chap. 4 (IoT and Service-Oriented Architecture for Flight 4.0).

Gartner defines big data as high volume, high velocity, and/or high variety infor-
mation assets that require new processing approaches for supporting discovery, opti-
mization and decision making [43]. IoT promotes the sharp growth of data with
sensors all over the world collecting and transmitting data to be stored and processed
[44]. It is a heterogeneous large-scale data with strong time and space correlation.
Analyzing this data to extract useful information using complex procedures is named

http://dx.doi.org/10.1007/978-3-319-75058-3_4
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as analytics [45]. Analysis procedures include clustering, filtering, regression, and
coloration. Hartmann and his colleagues will be presenting a discussion about this
topic in Chap. 5 (Big Data and Data Analytics in Aviation).

Wind River, one of the market leaders in embedded software, is arguing that IoT
concepts have already been applied in aeronautics domain through programs such
as NextGen and SESAR [46]. The air space is operated as an open architecture
IoT system. The connectivity and information flow through the airspace is enabled.
Further cloud-based service infrastructure System Wide Information Management
(SWIM) is facilitating the data exchange about all aspects of aircraft operation from
flight paths toweather information between producer and consumer systems [47]. IoT
concepts have also started to get utilized in the aeronautics domain for individual
devices. The best examples are sensor packages that monitor engines [48]. Li et
al. are proposing an aircraft as a big data platform [49]. They provide a number
of application cases that utilize aircraft data from anti-icing to health monitoring.
Tyagi and Nanda also report a bunch of projects that utilize big data and analytics,
particularly in air traffic domain [50].

The initial adaptations and implementations provide an insight about the upcom-
ing era where wewait for the wide spread of IoT, wireless networking, cloud comput-
ing, SoA, and big data concepts in aeronautics. The fourth revolution promotes smart
automation of connected devices and pushing technology from automatic system
toward autonomous and intelligent systems. Unmanned Aircraft Systems (UAS) are
early adapters of high levels of autonomy and intelligence. In aeronautics, autonomy
topic always comes with safety concerns. Torens and his colleagues will be address-
ing both topics together in Chap.8 (Toward Autonomy and Safety for Unmanned
Aircraft Systems).

1.5 A Gentle Introduction of Aeronautical Informatics

Twodecades ago, one of theNationalAeronautics andSpaceAdministration (NASA)
reports, namely Aeronautics Technology Possibilities for 2000, defines the fields of
study in aeronautics as aerodynamics, propulsion, structures, materials, guidance,
navigation and control, computer and information technology, human factors and
systems integration [51]. It addresses the key elements of the aeronautics technology
landscape of the last 20 years.

Traditional pillars of aeronautics are flight mechanics, aerodynamics, and struc-
tures. The organization of the degree program in Massachusetts Institute of Tech-
nology for aerospace engineering [52] provides us a valuable insight about today’s
pillars of the domain. It is organized around three areas: aerospace systems engi-
neering, aerospace vehicles engineering, and aerospace information engineering.
Aerospace information engineering focuses on real-time, safety-critical aerospace
systems. Its subareas include autonomy, software, communications, networks, con-
trols, andhuman–machine andhuman–software interaction.Aerospace systems engi-
neering focuses on the creation, implementation, and operation of complex aerospace

http://dx.doi.org/10.1007/978-3-319-75058-3_5
http://dx.doi.org/10.1007/978-3-319-75058-3_8
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systems. Its subareas include system architecture and engineering, simulation and
modeling, safety and riskmanagement, policy, economics, and organizational behav-
ior. And finally, aerospace vehicles engineering takes the engineering of air and space
vehicles with all their subsystems into its central focus. Fluid and solid mechanics,
thermodynamics, acoustics, combustion, controls, computation, design, and simula-
tion are its subareas.

Aforementioned classification from traditional to contemporary designates the
change in the technology landscape of aeronautics. ICT which is not there tradition-
ally becomes a part of the classification in NASA report 20 years ago. Today, it is
one of the core areas according to MIT when looking at how they structured their
aerospace engineering program. Atkins says that aerospace engineering curricula
are at crossroads [53]. In Chap.10 (Aerospace Engineering Curricular Expansion in
Information Systems), Atkins stresses the recognition about the role of ICT in today’s
and tomorrow’s aerospace education, and further emphasizes the lack of structured
means to address basic ICT skills in aerospace curricula.

The term informatics comes from German word “Informatik” which is first intro-
duced by Karl Steinbuch in 1957 [54]. While the theoretical fields of informatics
such as formal methods, complexity theory, or computability create the scientific
foundations of the discipline, the applied fields such as medical informatics or geoin-
formatics have been established as the interdisciplinary fields that apply scientific
foundations of informatics in particular fields of application. Aeronautical informat-
ics can be defined as the application of informatics in the aeronautics domain. It is the
intersection of informatics and aeronautics. This multidisciplinary field is involved
in information processing and engineering of information systems in relation to the
science or practice of building or flying aircraft. It is concerned with the use of infor-
mation systems for developing and flying aircraft. Aircraft systems such as flight
control, engine control, and navigation systems and all aspects of simulation for
systems development and crew training are in its scope.

With this book, the authors would like to highlight aeronautical informatics, the
ever-growing applied field of informatics in order to achieve next generation of the
flight with understanding, applying, and enhancing the disruptive advancement of
ICT in aeronautics.
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Chapter 2
Advances in Avionic Platforms:
Multi-core Systems

Falco K. Bapp and Jürgen Becker

Abstract Embedded systems play an ever increasing role in almost any field of daily
life, including the mobility domain taking massive benefits from using software in
their products. The intense use of software leads to a situation, where processing
platforms have to be introduced in many different fields of applications. However,
well-known platforms will not be able to satisfy the ever increasing requirements
on processing performance. Thus, for new functionality, higher performant systems
have to be implemented using alternative and emerging architectures. Multi-core
technology, being state of the art in standard ICT for a couple of years now, seems
to be the most promising way and will also find its way into avionics systems.
However, the characteristics of the target platforms—aswill be outlined in Sect. 2.2—
changed over the years. Coming from more simple and more easy to use single-core
processors to distributed multiprocessor systems toward multi-core processors, the
development shows huge differences as discussed in Sect. 2.3. Especially the use
of multi-core based systems in the mobility domains introduces challenges that are
by far more complex than primarily expected. These challenges, resulting from the
basic architecture of the processors, are identified and will be presented in Sect. 2.4.
Resulting failure modes and their sources are identified in Sect. 2.5. Finally, the
trends and conclusions regarding the emerging multi-core technology are discussed
in Sect. 2.6.

2.1 Introduction

Aviation electronics (avionics) weremainly based on the so-called “FederatedArchi-
tecture”, in which (sub-)system function, respectively the corresponding software
component, was executed on one dedicated computer. This trend was present in the
70s and was followed by a first optimization in the early 90s to reduce the total
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amount of computers within an airplane to be better compliant to the space, weight,
and power (SWAP) requirements and to achieve a better maintainability [1]. Based
on these requirements, the first concepts arose, which tended to centralized comput-
ers [2]. This trend has later been standardized as the Integrated Modular Avionics
(IMA) architecture in 2005 [3, 4]. With advanced hardware and software technolo-
gies, the same level of safety had to be ensured in comparison to the “Federated
Architecture”, which has been de facto free of interferences. Based on these assump-
tions, the characteristics of today’s avionics computers changed andwill change even
more, when considering future and upcoming processing architectures.

2.2 Characteristics of Processing Target Platforms

Being more restricted than other domains, e.g., automotive, avionics are embossed
by the certification authorities and the respective guidelines [5–8]. Following these,
the use of latest hardware architectures is very ambiguous and hence, most avionics
systems still rely on single-core computers. A general block schematic of such a
single-core architecture is depicted in Fig. 2.1. These processors consist of one central
processing core, an interconnect, and several peripherals. This structure directly
makes clear that the processing core is the only entity, which is able to access the other
components like peripherals. Furthermore, there are just little dependencies which
make it possible to derive properties like, e.g., the calculation of worst case execution
times (WCET). However, even though these architectures are better controllable and
more deterministic, they are working more and more close to their limit regarding
their workload. Adding more functionality might not be possible due to various
limitations.

When having a deeper look into single-core processors, several aspects become
obvious why these architectures are not able to be tuned to higher performance
anymore. In the last years, the development of processors followed Moore’s Law,
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Fig. 2.2 Transistor count in different processor architectures from [9]

which states that the amount of components within a chipwill double every year, later
every 2 years, depicted in Fig. 2.2. However, the integration density of transistors
as well as the realizable clock frequencies reached more and more the physical and
thermal limits.

This kind of processors will therefor become rare and expensive. However, they
are still the architecture used in avionics systems—as well as in many other domains.

One option to increase the processing performance is the use of increased clock
frequencies (e.g., >1GHz), which directly leads to the need for active heat dissipa-
tion. A second option would be the decrease of transistor sizes to have the chance
to extend existing functionality. However, both options will lead to an increased risk
regarding the sensitivity due to radiations and hence an increased probability for
faults due to single event effects (SEE). To overcome these issues, redundancy could
be used, but will directly be controversial to the targeted reduction of processing units
so save space, weight and power. The usage of redundancy would not be the only
option, also specialized controllers for avionics safety systemsmight be a possibility,
which, however, is not feasible due to low amounts of needed devices.

Trends in other domains, e.g., automotive, show that specialized controllers for
safety applications become more and more available. These processors include
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Fig. 2.3 Overview of lockstep CPU architecture according to [10]

several mechanisms that can be used to recognize misbehavior and perform the tran-
sition into a safe state. For example, using lockstep architectures (comp. Fig. 2.3)
provides means to recognize SEE efficiently. This kind of mechanism uses two
tightly coupled processing cores and a comparison logic. However, there is no huge
improvement in processing performance since both processing cores are used as one
logical core executing the same function and the same software code.

Adding more computing power in this sense means the addition of more
computers—centralized or distributed in planes.

2.3 From Distributed Multiprocessors Systems to
Multi-core Systems

In recent years, the trend of electronics in different domains changed from a decen-
tralized to a more centralized architecture. This trend was mainly driven by two
aspects, first the compliance to the SWAP requirements and second the more and
more performant processing architectures made available by semiconductor manu-
facturers.

2.3.1 Distributed Multiprocessor Systems

For the integration of more processing performance, more and more computers have
been integrated in planes, cars, and many other systems. These architectures have
been put together using a communication infrastructure in order to exchange data.
Each of the computers was responsible for a certain application in a certain place.
However, due to increasing functionality, the communication increased as well to
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exchangemore andmore information and data. This distributedmultiprocessor archi-
tecture is depicted in Fig. 2.4. One very important characteristic of such an archi-
tecture is the fact that each of the controllers have, e.g., their own memory and I/O
interfaces but a shared interconnection with comparably high latencies.

This kind of architecture is still valid and in use, however, the target is to decrease
the number of computers and interconnections as well as communication overhead.
Based on this idea, the next step was performed to more integrated architectures,
like, e.g., domain controllers in the automotive domain, that can host several proces-
sors within one computer and hence reduce the “far” communication overhead and
latencies. This results in an architecture as depicted in Fig. 2.5.

Having new possibilities due to latest technology advances, a further step of inte-
gration is feasible.A transition fromcentralizedmulti processor systems tomulti-core
systems helps reducing further overhead and controllers (comp. Fig. 2.6). However,
also this transition has its drawbacks, in terms of challenges that arise as described
in Sect. 2.4, as well as opportunities, which are presented in detail in Sect. 2.3.2.
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2.3.2 Emerging Technology: Multi-core Processors

Having a more detailed look into latest processing architectures, namely multi-core
controllers, will make the difference to their predecessors, namely single cores, obvi-
ous. In comparison to a single-core processor, these architectures have integrated
several independent processing cores.

However, this is not the only difference. Themain differences can be characterized
as follows:

• Increased number of processing cores
• Shared memory infrastructure, starting from typically Level 2 Cache
• Shared on-chip interconnect infrastructure
• Shared peripherals, coprocessors, accelerators, and services
• Common voltage supply and clock for several cores

In such architecture, the processing cores are tightly connected and typically
share the memory infrastructure. In various available embedded multi-core proces-
sors, only one single memory controller is available. Even the cache architecture is
typically shared among different processors, starting typically from level 2 cache. To
mention two architectures as possible representatives, the P4080 [11] architecture
and the i.MX6 Quad [12] platform from NXP are chosen, even though, there are
many more architectures, e.g., from Infineon, TI, and others.

When abstracting these architectures to a generic multi-core architecture, several
components can be identified that they have in common. Such a generic multi-core
architecture is depicted in Fig. 2.7.

Very beneficial of such architectures is the close interconnection and hence very
low latencies for inter-core communications and data exchange. Furthermore, the

Co-Processor

DMA controller

Shared CacheMemory 
controller

In
te

rc
on

ne
ct

 (C
ro

ss
ba

r, 
N

oC
,…

)

PeripheralsDebug

Timer

Clock

Pwr. 
Supl.

Core

D-CacheI-Cache

Reset Watchdog

Core

D-CacheI-Cache

Reset Watchdog

Fig. 2.7 Generic multi-core architecture



2 Advances in Avionic Platforms: Multi-core Systems 23

Co-Processor

DMA controller

Shared CacheMemory 
controller

In
te

rc
on

ne
ct

 (C
ro

ss
ba

r, 
N

oC
,…

)

PeripheralsDebug

Timer

Clock

Pwr. 
Supl.

Core

D-CacheI-Cache

Reset Watchdog

Core

D-CacheI-Cache

Reset Watchdog

Reconfigurable Logic 
(FPGA Fabric)

HW-
component

Fig. 2.8 Generic multi-core architecture with integrated reconfigurable logic

access to sharedmemory provides a good possibility to share data, but also introduces
new challenges that will be discussed in Sect. 2.4.

Even though, multi-core processors can provide strongly increased processing
power in comparison to single cores, several applications exist, where a hardware
acceleration can be beneficial. These hardware accelerations can be realized using
reconfigurable hardware such as FPGAs. Latest trends in processing architectures
are the integration of a multi-core processor as well as a reconfigurable fabric. How-
ever, the reconfigurable logic can not only be used to realize accelerators but also
means to increase safety. A generic overview of such an architecture including the
reconfigurable logic is depicted in Fig. 2.8.

Possible hardware extensions using reconfigurable logic could bemeans for online
monitoring [13, 14] or hardware virtualization [15]. Such reconfigurable logic can
additionally be used in a very flexible and dynamic manner also at runtime of the
system. However, this would be a major step for future avionics systems, since
dynamic features are not considered in today’s certification processes.

Following this description of the characteristics of multi-core processors, the
challenges are derived in the next section.
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2.4 Challenges Resulting from the Multi-core Architecture

Based on the integration of more and more functions as well as components within
a Multi-Processor-System-on-Chip (MPSoC), the complexity for the development
is ever increasing. Having a look at the documentation, it is obvious that this can be
used as a proof for the increasing complexity. Even though, manuals have several
thousand pages—and multiple manuals are needed for one architecture—not all
components are clearly described and mentioned in them. Several components are
used just for debugging and development purposes by the manufacturer and are
hence not documented and usable for a productive use case. Also an influence of
these components to the productive system cannot be precluded in general.

However, the main challenges for the use of multi-core systems in safety-critical
applications can be summarized as follows:

• Segregation in time and Space:
New methods are needed, which can realize a safe sharing of resources while
respecting timing limitations.

• Synchronization and distribution of Application Software:
Software components/functions realizing an application have to be distributed effi-
ciently while respecting a cost function consisting of synchronization and com-
munication efforts.

• Efficient distribution of platform Software:
Analogously, the distribution of platform software has to be performed like, e.g.,
operating systems, in order to reduce communication and synchronization efforts.

• Analysis of multi-core architectures:
In order to derive guarantees and worst case approximations like, e.g., worst case
execution times (WCET), the hardware and software architecture need to be ana-
lyzed.

• Managing the complexity:
Managing the configuration space of a multi-core architecture is necessary to
achieve a safe and reliable configuration of the platform.

For newsystemswith a safety-related focus, these challenges need to be addressed.
Especially predictability and determinism are of utmost importance in order to guar-
antee the systems behavior. However, for the described challenges there are not
always solutions at design time, what makes it necessary to introduce also some
mechanisms like online monitoring or advanced tracing and so forth.

Basically these challenges can result in various failure modes from an application
point of view.
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2.5 Possible Failures from an Application Point of View

Typically faults resulting from the multi-core challenges can result in a failure
of the application. When having a look from an application perspective, three
main failure modes can be identified—high execution latency, erroneous calcula-
tions/data/accesses, missing execution. These failure modes can result from different
sources as depicted in Fig. 2.9.

These failure modes can also be present in single-core systems, but the resulting
effects are by far extensive in a multi-core context. Additionally, the sources for the
failure modes are manifold.

For example the calculation or estimation of worst case execution times (WCET)
becomes more and more challenging, when having several accesses to resources in
parallel. This can result from shared caches where data was displaced by another core
and hence need to be fetched frommainmemorywhichwas not intended to be. Based
on the usage of highly efficient cache displacement strategies, which are typically not
deterministic, timing can be delayed and hence deadline missed. A similar behavior
can be observed when having highly increased communication traffic on a shared
interconnect, where accesses of any type can be delayed.

Erroneous data on the other hand can result from usage of outdated information
resulting from dependencies of one core to another, so called Race-Conditions (time
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Fig. 2.9 Possible failure modes in multi-core based systems from an application point of view
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of use vs. time of check). In such a case, new data is already in calculation but not
available in memory while another core accesses the available data in the memory.
Further reasons for failure modes of the application can result from single event
effects (SEE)/single event upsets (SEU). Especially in a multi-core architecture,
the integration density of transistors is higher than in a single-core and hence the
probability for radiation effect becomes higher. Furthermore, more transistors can
be influenced and hence a broader range of effects is possible. Additionally, missing
execution of software components can result from a malicious configuration of the
interrupt signals as one example. In such a case, a wrong core would react on an
interrupt intended for another core. Also, these malicious interrupt configurations
can result from SEE/SEU in the configuration registers.

To sum this up, there are many possible fault sources that can result in a failure
mode of the application running on a multi-core based system. Even though, the
failure modes can also arise in a single-core architecture, the effects and influences
are much bigger in a multi-core scenario.

2.6 Conclusions

Having a look into avionics systems clearly shows that embedded systems still rely
on single-core computers. However, this has to change in near future in order to
fulfill all requirements regarding processing performance. On the other side, more
and more highly performant embedded architectures become available, which could
fulfill these needs. However, these architectures are typically not intended for the use
in avionics and hence need some further mechanisms to be integrated.

This is exactly what is more and more also on the roadmap of the well-known
semiconductor manufacturers, even though there is no avionics specialized con-
troller. There are many possibilities and chances to integrate architectures from other
domains, e.g., from the automotive industry. These synergies to other domains can
be discussed as in [16].

As emerging technology multi-core processor have to be more and more in the
focus of avionics engineers. Further detailed investigations have to be performed of
course to gain more and more knowledge and arguments for a successful implemen-
tation. Online monitoring and detailed analysis become even more important than
today in combination with low overhead and taking the opportunities of multi-core
architectures.

References

1. R. John, Partitioning in avionics architectures: requirements, mechanisms, and assurance, in
NASA Langley Technical Report Server (1999)



2 Advances in Avionic Platforms: Multi-core Systems 27

2. H. Butz, Open integrated modular avionic (IMA): state of the art and future development road
map at airbus Deutschland. Signal 10, 1000 (2010)

3. R.L. Eveleens, Integrated modular avionics development guidance and certification consider-
ations. Mission Syst. Eng. 2, 1120–1132 (2006)

4. J.W. Ramsey, Integrated modular avionics: less is more-fresh approaches to integrated modular
avionic architectures will save weight, improve reliability of A380 and B787 systems. Avion.
Mag. 31(2), 24 (2007)

5. RTCA. DO-254 design assurance guidance for airborne electronic hardware (2000)
6. Certification Authorities Software Team (CAST). Position Paper CAST-32A - Multi-core Pro-

cessors. Rev. 0 (2016)
7. European Aviation Safety Agency (EASA). Certification memorandum - SWCEH-001 devel-

opment assurance of airborne electronic hardware. Rev. 01 (2011)
8. European Aviation Safety Agency (EASA). Certification memorandum - SWCEH-002 soft-

ware aspects of certification. Rev. 01 (2012)
9. Wgsimon. Moore’s Law, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?

curid=15193542
10. Infineon. Product brief: highly integrated and performance optimized, 32-bit microcontrollers

for automotive and industrial applications (2014)
11. NXP. P4080 QorIQ integrated multicore communication processor family reference manual

(2012)
12. NXP. i.MX 6Dual/6Quad applications processor reference manual (2013)
13. O. Sander, F. Bapp, T. Sandmann, V.V. Duy, S. Bähr, J. Becker, Architectural measures against

radiation effects in multicore SoC for safety critical applications, in 2014 IEEE 57th Interna-
tional Midwest Symposium on Circuits and Systems (MWSCAS) (IEEE, 2014), pp. 663–666

14. F.K. Bapp, O. Sander, T. Sandmann, V.V. Duy, S. Baehr, J. Becker, Adapting commercial off-
the-shelf multicore processors for safety-related automotive systems using online monitoring.
Technical report, SAE Technical Paper (2015)

15. F.K. Bapp, O. Sander, T. Sandmann, H. Stoll, J. Becker, Programmable logic as device virtual-
ization layer in heterogeneous multicore architectures, in International Symposium on Applied
Reconfigurable Computing (Springer, Berlin, 2016), pp. 273–286

16. O. Sander, F.K. Bapp, L. Dieudonne, T. Sandmann, J. Becker, The promised future of multi-
core processors in avionics systems. CEAS Aeronaut. J. 8(1), 143–155 (2017). https://doi.org/
10.1007/s13272-016-0228-x. ISSN: 1869-5590

https://commons.wikimedia.org/w/index.php?curid=15193542
https://commons.wikimedia.org/w/index.php?curid=15193542
https://doi.org/10.1007/s13272-016-0228-x
https://doi.org/10.1007/s13272-016-0228-x


Chapter 3
Emerging Trends in Avionics Networking

Andreas Reinhardt and Aysegul Aglargoz

Abstract Embedded sensing systems are widely deployed aboard aircraft to capture
flight parameters and cater to their processing, logging, and visualization. However,
it is their interconnection to form avionics networks that facilitates the provision
of a large range of additional functionalities. Most prevalently, the fusion of sensor
data collected at different points within aircraft enables the collection of a holistic
and comprehensive situational picture. Several key design decisions must be made
to set up avionics networks in practice: Besides the identification of suitable hard-
ware platforms, decisions must be made regarding the selection of communication
technologies to use, the desired network topologies, and the choice of networking
protocols. Across all these dimensions of the parameter space, application-specific
requirements must also be adequately catered for, e.g., to meet latency, performance,
or reliability constraints. In this chapter, we will discuss requirements to avionics
networks as well as highlighting design options to meet them. At last, we present
selected promising avenues for future research.

3.1 Introduction

Networked computer systems play a considerable role in almost all current means
of transportation. Modern cars feature up to one hundred embedded systems to pro-
vide functionality for control and comfort [1]. Even more such devices are present
in current-generation aircraft, catering to a broad diversity of services. A plethora
of vital functionalities are provided by such avionics systems, such as flight con-
trol (fly-by-wire), navigation support, or the continuous monitoring of mechanical
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components, environmental conditions, and the structural health of the aircraft. A
commonality of virtually all deployed avionics components is their reliance on net-
working, i.e., the exchange of data between systems over communication links.

Parameters relevant to the aircraft’s current operating conditions constitute the
most prevalent and simultaneously the most important type of network traffic. Such
data can originate from diverse systems and sensors, both from aboard the aircraft
(e.g., engine condition monitoring) as well as external to it (e.g., navigation data
received via satellite connections). The processing (i.e., fusion, consolidation, and
interpretation) of incoming data enables control systems to infer the aircraft’s opera-
tional state, exert control over actuators, and thereby ensure safe operating conditions
during all flight phases. It is obvious that the data generated by this wide range of
sources needs to be forwarded to processing systems or data concentrators in a reli-
able and timely manner, and that flight control commands impose similarly high
dependability requirements on the communication links across which they are trans-
mitted. Safety and dependability are consequently among the key requirements to be
fulfilled during the design and implementation of avionics networks. In order to meet
these requirements in practice, appropriate choices of the employed communication
standards, network topologies, and communication protocols need to be made.

Today, wired communication networks are primarily used for the transmission of
sensor readings and control commands aboard aircraft.Wirednetworks are preferably
chosen because of the possibility to deterministically guarantee upper bounds on
packet loss rates and delays. Thus, the dependable transmission of parameters critical
to the safe operation of aircraft is ensured. Furthermore, wired networks can be
designed to support the multiple-source multiple-sink traffic patterns prevalent in
avionics networking, where collected sensor data need to be forwarded to the relevant
systems for consolidation and processing. Besides designing the communication
infrastructure, the choice of suitable communication protocols is of equal importance.
Several such protocols for wired links in commercial aircraft have been proposed
and published (mostly in the form of ARINC standards), and are widely used in
practice. Their designs have been specifically adapted to accommodate the traffic
patterns prevalent on aircraft, where the number of networked sensing, processing,
and actuation devices is usually large. The symbiotic combination of aforementioned
aspects in communication network planning enables such networks to provide the
required quality of service (QoS) level. That is, they guarantee a deterministic bound
for the minimally achievable throughput as well as upper bounds to delays and the
likeliness of packet losses.

A number of limitations, however, impact the applicability of such, often pro-
prietary, solutions to serve as the sole communication backbones in next-generation
avionics. First, requirements to the communication links are strongly influenced by
the nature of the data to transfer. Sensors that generate data of constant size at periodic
intervals facilitate optimal traffic scheduling and thus allow to meet QoS require-
ments deterministically. An increasing scheduling complexity ensues, however,
once data sources generate multimedia data streams with high-bandwidth require-
ments or transmit sensor data at irregular intervals and with varying packet sizes.
More flexible networking solutions, capable of achieving traffic-dependent real-time
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characteristics, are necessary to meet these requirements. Second, several currently
used communication protocols impose limits on the number of supported terminal
systems that may be attached. In other words, their scalability is limited. To establish
connectivity between all data sources and sinks, additional processing devices must
be added to act as data concentrators. The resulting network topologies often no
longer allow to reflect the logical interconnection of systems within the physical net-
work, which in turn complicates their management. As a last important point, the cost
of installation-specificwired connections as well as the correspondingweight of both
cables and necessary conduits represent an obstacle in the design of fuel-efficient
aircraft.

As demonstrated by the enormous success of the World Wide Web, the con-
vergence to a basic set of widely accepted protocols and standards is a keystone
for building future-proof networking solutions. In the avionics domain, a current
trend toward unifying wired communication networks is the aircraft data network
(ADN), specified in ARINC 664 and implemented, e.g., in the Avionics Full-Duplex
Switched Ethernet (AFDX). Based on the well-established and widely used IEEE
802.3 (Ethernet) protocol, ADNhas been designed tomeet the requirements of avion-
ics, i.e., accommodate traffic that has high reliability and real-time requirements. The
development cost of switching and routing equipment for ADN is greatly lowered in
comparison to the use of proprietary solutions (such as ARINC 429 and ARINC 629)
due to its wide compatibility with commercial off-the-shelf Ethernet devices. Despite
the higher bandwidth provided in ADN as compared to earlier avionics networking
standards, a capacity limitation is still present due to the hardware limitations of
IEEE 802.3.

Nonetheless, a constantly rising demand for networking capacities is expected.
The reason lies within steady technological progress in the domain of microelec-
tromechanical systems (MEMS) [2]. Being able to manufacture miniaturized and
networked sensing devices for the collection ofmanifold physical parameters enables
amore comprehensive situationalmonitoring in future-generation aircraft. This trend
is well in line with the upcoming vision of the Internet of Things [3], in which a per-
petually growing number of heterogeneous devices are expected to be interconnected
on the sameworld-spanning network. As a consequence of this growth in the number
of networked entities, network capacity limits will be reached eventually. Practical
effects of the exhaustion of networking resources range fromminor violations of QoS
levels to total network failures. It is thus imperative to consider emerging trends in
computer networking in order to create a sustainable and scalable infrastructure for
the future deployment of sensing and processing devices on aircraft while meeting
their QoS requirements at the same time.

One approach to temporarily accommodate the continuously growing number
of devices is to establish separate networks for real-time control traffic and data
transmissions without strict QoS guarantees. Interconnected at domain gateways or
dedicated network bridges, the accomplished separation of concerns increases the
possible extent of concurrency. The improvements to the management and control
of such networks are, however, generally counterbalanced by the need to deploy
separate network infrastructure. Another way to alleviate these effects is the use of
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wireless networking. Even today, the use of wireless connectivity is indispensable for
aviation communication, i.e., the voice and data communication between aircraft as
well as between aircraft and ground stations. By way of an example, each aircraft’s
automatic dependent surveillance broadcast (ADS-B) system periodically broadcasts
position and velocity information to other stations [4]. In contrast, the potential of
wireless networking used locally aboard an aircraft has only seen limited scientific
coverage, despite strong ongoing research interest in the area of wireless networking.

3.2 The Potentials of Wireless Networking

Wireless communications are ubiquitous and find application in innumerable use
cases. Satellites broadcast television channels or positioning information around
the clock. Personal handheld devices are equipped with capabilities to wirelessly
connect to cellular and/or local area networks (Wireless LANs). In aviation, all long-
distance voice and data exchanges are handled via radio communications. Aligned
with this trend, wireless channels have also been identified as promising candidates
for the communication between embedded systems. The resulting intensive research
activities in the areas of wireless sensor networks (WSN) [5] and cyber-physical sys-
tems (CPS) [6] have demonstrated the huge potential for the wireless monitoring of
remote sites, the design of networked embedded control systems, and the realization
of automation solutions that rely on the wireless exchange of data.

The enormous success of wireless networking between sensors, actuators, and
processing systems can be primarily attributed to the flexibility of untethered opera-
tion. Wireless networks have measurably lower installation requirements than their
wired counterparts. Instead of having to supply each connected terminal system with
a dedicated wired data connection, required efforts reduce to the installation of bridg-
ing devices (i.e., wireless access points or border routers) and their interconnection
within a local area network (LAN). Moreover, wireless embedded sensing systems
can be deployed in close physical proximity to the phenomenon of interest. In fact,
sensors can even be positioned on the fuselage of aircraft, as demonstrated in [7].
While the distributed deployment of devices creates new challenges for their power
supply, low-power embedded systems can often be operated on battery power for
extended periods of time, or employ techniques like energy harvesting [8] to sus-
tain their operation. Lastly, the limited wireless range implicitly caters to locality-
aware connectivity. Devices in physical proximity can communicate with each other
directly, but interference between remote systems is extremely unlikely due to the
path loss experienced by wireless data transmissions. While this necessitates the use
of multi-hop routing protocols to interconnect devices beyond local range, the result-
ing smaller collision domains can cater to less channel contention and may even
counterbalance the energy expenditure for multi-hop message relaying.

Wireless local area networks are already in practical use aboard many aircraft,
particularly in the domain of in-flight Internet access and partially also for onboard
entertainment. Virtually all such systems are based on the IEEE 802.11 standard and
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cater to on-demand multimedia (e.g., video and audio) streaming and/or satellite-
based Internet access. Due to the non-real-time nature of transported traffic, however,
QoS considerations take a subordinate role. It thus remains to be assessed whether
IEEE 802.11 is a suitable substrate to exchange data collected from onboard CPS,
or if other communication solutions should be given preference in order to meet the
corresponding requirements better.

3.3 Wireless Networking in Avionics

Technological advancements in sensor technology and the ongoing miniaturization
of embedded microsystems will result in a significant growth of the number of sens-
ing and actuation systems aboard aircraft. Their rollout at large scale is, however,
hampered by the limited scalability of wired network topologies, the weight of cor-
responding cables and conduits, and resulting constraints to deployment locations.
Wireless connectivity between embedded devices that form cyber-physical systems
is thus indispensable in the long term. Although current wireless LAN standards
qualify as alternatives to wired network connections, they introduce new challenges.
Most importantly, they often provide limited support for QoS and dependability,
i.e., the resilience to disturbances and packet loss. This is in opposition to wireless
avionics networks which generally require tight QoS guarantees to be in place due
to safety and security concerns. Informed decisions on the choice of the used com-
munication standard and protocol must thus be made, and possibly supplementary
ways to increase reliability be added.

Even thoughwireless channels are inherently prone to external disruptions, several
emerging technologies have the potential to mitigate the resulting problems. These
disruptive innovations in wireless communications and networking can strongly be
expected to pave the way toward the next generation of avionics networks and sys-
tems. We summarize selected current trends as follows.

3.3.1 Communication Standards and Spectrum Utilization

Diverse networking techniques and protocols have been proposed and standardized
for wireless local and personal area networks. Their throughputs range from less than
1MBit/s (IEEE 802.15.4) to data rates in excess of 1GBit/s (IEEE 802.11ad). The
range and power consumption of corresponding transceiver chipsets is, however,
often correlated with the achievable transmission rate. Particularly as low-power
embedded sensing devices may never fully saturate links that provide high data
rates or do not require long-distance transmissions, the choice of the communication
standard needs to be made carefully.
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A key design decision to make is the selection of the frequency band to be used.
Most existing wireless networking standards use frequencies in the ISM (industrial,
scientific, medical) bands [9]. As a result, concentrations of traffic can be observed
in very few select frequency ranges (such as 2.4GHz, 5GHz, or 868/915MHz).
While it may appear counterintuitive to rely on these highly utilized frequency bands
in order to attain high reliability and low packet loss rates, reasons to do so exist
nonetheless. First, ISM bands are globally exempt from licensing; thus, no additional
cost is incurred for their usage. Second, due to the worldwide use of ISM frequencies
for wireless data traffic, chipsets implementing many communication standards are
readily available, thus lowering the development cost. Third, channel contention and
the resulting risk of interference in the ISM bands may be high on the ground, but
becomes less severe once an aircraft is airborne, particularly when measures for
coordinated medium access (cf. Sect. 3.3.2) are adopted.

Performance and range considerations also take a key role in the choice of the
wireless frequency band. While wireless communications operated at higher fre-
quencies generally provide larger channel bandwidths and consequently allow for a
greater throughput, their wireless range is often reduced due to the attenuation and
reflection of signals by obstructions in their path. Higher transmission power set-
tings can partially compensate for this limitation, yet they generally lead to a higher
demand for electrical power to operate the wireless transceiver devices. Thus, they
violate the low-power operation requirements of embedded sensing systems. More-
over, transmission power settings cannot be increased indefinitely due to regulatory
restrictions. Another factor to consider is that transmissions at high power settings
can cover larger distances, yet they simultaneously increase the size of the sending
station’s collision domain, i.e., the radius in which its signals can lead to interference.
The advantages of multi-hop communications (see also Sect. 3.3.4), where data is
iteratively being forwarded by devices with short communication ranges, are thus
often likely to outweigh the use of long-range communication links because of their
smaller collision domains.

It needs to be noted that the protocol selection need not result in a single choice
for all wireless avionics communications. Rather, multiple protocols with different
properties can be selected according to the application requirements and be operated
in parallel, either as standalone networks or interconnected through bridging devices.
In both cases, it is imperative that the coexistence between different networks devices
is ensured. The simultaneous use of the wireless spectrum can be accomplished by
dividing it into frequency bands (i.e., using a frequency division multiple access,
FDMA) scheme or applying other dimensions of separation, such as time (TDMA),
code (CDMA), or space (SDMA). Regardless of the planned approach to ensure
coexistence of the resulting networks, the same selection criteria as outlined above
apply when operating two or more communication standards in avionics networks.
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3.3.2 Cognitive Radios and Collision-Free Interoperability

In order to facilitate the concurrent use of the wireless frequency spectrum by mul-
tiple services, it has been logically separated into frequency bands. The resulting
assignments between these frequency ranges and corresponding service types [10]
are performed by regulation authorities, such as the Federal Communications Com-
mission (FCC). A key objective of using fixed mapping is the guaranteed availability
of the spectrum allocation to a given service type and the consequent absence of
interference. This separation is enforced in practice through penalties for unautho-
rized spectrum use. Regulations for the frequency use within defined bands, such
as in the ISM ranges, are less strict, however. If limitations are applied at all, they
primarily relate to the maximum transmission power and allowed duty cycle (i.e.,
the fraction of time a transmitter may utilize the wireless channel) of stations [11].

This lack of regulation within the ISM bands often leads to their unbalanced uti-
lization [12] and a resulting network performance below the theoretical bounds.With
interfering transmissions representing themain cause of delays and data losses, a bet-
ter balancing of traffic is required for future-generation networks. On these grounds,
the use of cognitive radios is a growing research area of high potential for avionics.
Its objective is to enhance the use of the wireless radio spectrum through real-time
assessments of its utilization. In essence, through constant monitoring of a network’s
utilization, stations can make informed decisions on their channel choices. Platforms
fitted out with multiple radio transceivers can even switch to completely different
frequency bands if their preferred band is saturated. Despite their operation without
a central coordination, measurable throughput increments have been reported [13].
Besides the trend to use cognitive radios to improve the utilization of channels within
the ISM bands, they bear even greater potential when applied to other frequency
bands. More specifically, the reuse of licensed frequencies becomes possible [14]
as long as the cognitive nature guarantees that transmissions will cease immediately
when usage by its assigned spectrum owner is determined. This way, an even larger
spectrum becomes available for onboard wireless traffic, on condition that the used
transceiver hardware is ready to utilize these bands. Spectrum awareness is inevitable
for wireless avionics networking to face the increasing penetration of aircraft cab-
ins with user-operated wireless devices, such as Bluetooth-based headphones or cell
phones. Moreover, through the identification of traffic patterns as well as currently
available and unavailable channels in real-time, cognitive radios can even detect
malicious network access attempts and thus increase the level of safety and security.

Instead of adding spectrum sensing functionality to all deployed wireless stations,
the introduction of dedicated spectrum agents with complex sensing capabilities is
proposed as an alternative approach. Even though originally conceived as a concept
for 5th generation wireless systems (5G) [15], the use of spectrum agents in avionics
networks is envisioned to carry high potential. Spectrum agents are devices with
wide-band sensing capabilities and high computational performance to cope with
the fast data processing tasks required to assess the current spectrum usage. Con-
sequently, they can provide spectrum utilization information to the network within
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a short period of time while keeping the cost, complexity, and power consumption
of embedded sensing devices unaffected by spectrum sensing tasks. With the intro-
duction of spectrum agents, complex sensing schemes can be implemented, which
provide more reliable information about the transmission medium and can, e.g., be
used to optimize the channel allocations.

3.3.3 Software-Defined Networking

Cognitive radios and spectrum agents can be categorized as reactive approaches to
improve the spectrum utilization. They rely on a passive monitoring of the spectrum
and assist in the selection of networking resources when data shall be transmitted.
The use of cognitive radios almost always caters to higher throughput as compared
to the conventional approach of using fixed channel allocations. However, it needs
to be noted that stations can only collect local observations of the spectrum utiliza-
tion. Thus, network-wide requirements, e.g., QoS guarantees for multi-hop traffic
flows, cannot be accommodated through cognitive radios by design. Even when the
spectrum is probed proactively, i.e., regardless of whether an actual transmission is
pending [16], cognitive radios can only take localized observations into consideration
when making decisions on the channel to use.

The centralized coordination of networking resources represents an alternative
solution to manage the use of available capacities. When complete information on
data flows on network scale is known to a controller, an optimal assignment of
routing paths and resource allocations can be centrally computed and equipment in
the network be configured correspondingly. This approach is highly advantageous
whenQoSguarantees, e.g., the accommodation of trafficwith real-time requirements,
are needed beyond a station’s one-hop neighborhood. The concept is known by the
name of software-defined networking (SDN) [17, 18] and already widely exploited
in corporate networks to date; gradually, it is also finding its way into broader use
on the Internet [19]. Its operation is straightforward: Any station that needs to make
decisions on the networking level forwards its requirements to an SDN controller
node, which in turn computes a suitable network configuration and returns it to all
concerned devices. Besides adjusting the channel allocations, decisions may even
include the definition of parameters for the wireless communication protocol (e.g.,
channel setting or transmission power levels). The SDN concept thus caters for a
flexible and scalable management of networks, which is vital for large-scale systems.

SDN relies on a separation of concerns: A communication channel, called the
control plane, is used to let the SDN controller know about traffic flows and retrieve
corresponding configuration information. The actual data traffic is carried on a log-
ically (and often also physically) separated connection, the so-called data plane.
In line with the possibility of equipping wireless devices on aircraft with multiple
wireless interfaces (cf. Sect. 3.3.1), such a separation of channels can also be accom-
plished in avionics. An evaluation to what extent SDNs can be used to ensure QoS



3 Emerging Trends in Avionics Networking 37

guarantees, improve dependability, and maximize network performance has to be
considered an open research question, however, despite its promising prospect.

3.3.4 Dependable and Secure Communications

The aspects of safety and security are of paramount importance in avionics sys-
tems. Accomplishing these properties in software imposes strict requirements on
development processes to ensure compliance to the DO-178B guideline (Software
Considerations in Airborne Systems and Equipment Certification). Software exe-
cution on microprocessors is, however, much more reliable than a communication
channel’s physical properties encountered duringwireless transmissions. Besides the
impact of destructive interference due to channel contention, misconfigured systems
(intentionally or by accident) can also strongly degrade the network performance. It is
thus imperative to design communication systems accordingly to minimize the neg-
ative impact of interfering transmissions on a network. The mechanisms presented
in Sects. 3.3.1–3.3.3 can help to meet these requirements to a certain extent.

To combat adverse wireless channel conditions at even higher efficacy, emerg-
ing trends from the domain of networked embedded systems can be considered for
implementation in avionics networks as well. A milestone in research on dependable
communications between embedded systems has been reached with the presentation
of protocols that exploit the physical phenomenon of constructive interference [20].
By means of transmitting identical signal waveforms simultaneously by multiple
stations, greater wireless transmission ranges can be covered at higher reliability.
Moreover, the eventual involvement of all networked devices in the communication
network generally allow protocols based on constructive interference to reach high
packet success rates and the message’s dissemination to all devices in the network.

Another approach to reduce to negative impact of high contention on select chan-
nels is the use of channel-hopping protocols. Examples include as IEEE 802.15.4e in
TSCH mode or IEEE 802.15.1 (Bluetooth). In these protocols, stations periodically
select their communication channel according to predefined sequences. As opposed
to the reactive nature of cognitive radios, channel-hopping protocols proactively bal-
ance traffic between the channels available in a given frequency band. In principle,
constructive interference and channel hopping can be used in conjunction, yet no
such design has been presented in literature so far. As a third contribution toward
more reliable communications to be listed here, multipath protocol designs have been
proposed [21]. Transmitting amessage acrossmultiple routes in parallel will increase
its chances of success, particularly in lossy networks, at an energetic overhead that
is often smaller than when relying on constructive interference. The number of paths
used is a key parameter in multipath protocols, as it increases both the reliability and
energy demand of the network’s operation. The dense networks anticipated for cyber-
physical systems in avionics will enable fine-grained adjustments to this parameter,
and allow for its adaptation to diverse QoS requirements.
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Besides above considerations to ensure a dependable communications substrate,
meeting application requirements is equally important for the success of wireless
networking in avionics. Application traffic in computer networks is generally con-
sidered in the form of end-to-end flows, i.e., traffic from a source device to one or
more destination nodes. In wireless and wired networks alike, the data transmission
may require the involvement of intermediate routers or relay nodes that forward traffic
toward its destination. In order to accommodate the requirements toQoS (particularly
delay and throughput), all devices along a route must be configured accordingly. As
compared to traditional approaches (e.g., DiffServ [22] and IntServ [23]), the afore-
mentioned concept of software-defined networking again proves necessary for the
global consideration of traffic flows and resource reservations.

The need for data integrity and security protection may also arise from the appli-
cation requirements. Authentication, i.e., limiting network access to devices that are
crucial for the functionality to be provided by the network, takes a key role therein.
A key constraint for the widespread use of network access control in avionics cyber-
physical systems, however, is their operability on resource-constrained embedded
devices. A trade-off between the achieved degree of protection and the resulting
resource footprint thus needs to be found. It is often also left to application develop-
ers to decide which additional network security objectives (e.g., integrity protection,
confidentiality) are needed. A methodological approach to accomplish information
security in avionics networks is thus urgently required. The same constraints as listed
above apply in this case as well, i.e., corresponding mechanisms must be suitable for
their use on low-power embedded systems.

3.4 Networking Between Aircraft and Other Stations

Besides the anticipated growth in the use of onboard wireless communications, voice
and data links to ground stations (directly or via satellites) as well as to other aircraft
also take a key role during flight operations. Given the breadth of sensor data antici-
pated to originate from avionics sensor networks, a torrent of real-time updates from
aircraft health and usage monitoring systems (HUMS) can be expected to become
available. They are often vital for corporate operations and thus need transmission to
ground stations within tight temporal bounds. Distances between nodes in such net-
works, however, are significantly larger than in the case on onboard LANs described
above; consequently, a different family of technologies qualify as candidates for their
transmission. Existing VHF-based communication technologies, e.g., aircraft com-
munications addressing and reporting system (ACARS) and VHF Datalink (VDL)
systems, are only partially applicable due to their limited data rates (on the order of
tens of kilobits per second) and their cost of use when comprehensive HUMS data
traffic shall be forwarded. Instead, a promising technology is the use of Ku-band
satellite connections in the frequency range between 12 and 18GHz, whose large
bandwidth allocations allow for high throughput rates. Different to the local area
networks used onboard aircraft, wireless long-range signals are even more impacted
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by adverse weather conditions or other sources of interference. In-depth analyses of
routing based on current meteorological conditions, frequency stability considera-
tions due to the aircraft’s velocity, or handover processes in transition regions between
coverage sectors need to precede the widespread use of Ku-band links. Lastly, secu-
rity recommendations for communication between aircraft, satellites, and ground
stations need to be considered, e.g., such as presented in [24].

3.5 Insights and Conclusions

Within the development toward the next generation of flight, a strong increase in the
number of sensing, processing, and actuation components can be expected aboard
aircraft. Their interconnection to create health and usage monitoring systems allows
airlines and operators to gain unprecedented in-depth insights into operation condi-
tions and the potential for real-time predictive maintenance. As highlighted above,
their integration into a wireless cyber-physical avionics network will be inevitable
to realize such services at scale [25].

A set of prerequisites must be fulfilled for their practical realization. First, an
informed choice of the wireless communication standards and protocols must be
made. Second, quality-of-service guarantees take a crucial role in wireless avionics
networking, and consequentlymeans to deterministically provide latency bounds and
throughput guarantees are needed. Third, ways to coordinate and control the wireless
traffic, in particular with regard to a contention-free wireless medium access, must
be carefully chosen in order to ensure dependable, extensible, and secure networks.
Fourthly and lastly, ensuring that these mechanisms are ready to cope with the antic-
ipated growth in the number of devices over time, i.e., the network’s scalability, is
of particular importance.

Research on computer networks dates back almost 50 years, when the ARPANET
was first deployed. To date, the world-encompassing Internet connects billions of
systems globally, using technologies that have matured over years of their practical
use.Manyof the resulting technological advancements can be applied in avionics data
networks to collect, process, and wirelessly transmit information within aircraft. In
this chapter, we have surveyed corresponding emerging trends in computer networks
which may serve as the fundament to make wireless avionics networks a reality.
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Chapter 4
IoT and Service Oriented Infrastructures
for Flight 4.0

Christos P. Antonopoulos, Konstantinos Antonopoulos
and Nikolaos S. Voros

Abstract Flight 4.0 represents a rapidly expanding research domain that brings IoT
(Internet of Things) technology in the aviation domain. Based on various engineering
domains such as Wireless Sensor Networks (WSNs) and embedded systems, Flight
4.0 systems are characterized by high degree of heterogeneity regarding various
perspectives, such as communication, hardware, and software solutions. Addition-
ally, in order to be well accepted by the end users, it is of paramount importance to
exhibit high degree of configurability and flexibility so as to be applicable in diverse
application scenarios. Aiming to address such objectives, this chapter attempts to
identify the main aspects and tendencies toward a holistic end-to-end communica-
tion infrastructure for Flight 4.0 systems. In this context, and serving as a roadmap,
the respective architectures should offer a homogeneous support to a wide range of
WSN communication technologies and protocols, while being able to support time-
constrained monitor, control, and configuration of critical Flight 4.0 infrastructure.
In addition, such architectures must emphasize on the use of distributed components
that are able to offer enhanced fault tolerance performance, a critical aspect for most
modern aviation systems.

4.1 Introduction

Flight 4.0 represents an emerging research domain, where Cyber-Physical Systems
(CPS) are employed for delivering end-to-end services for aviation and aeronau-
tics. The term CPS refers to the tight integration of cyber and physical objects,
which in the case of Flight 4.0 are distributed components employed in aviation
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monitoring and control systems. The term “cyber objects” refers to any comput-
ing hardware/software resources that can achieve computation, communication, and
control functions in a discrete, logical, or switched environment [1, 2]. Also, physical
objects refer to any natural or human-made systems that are governed by the laws
of physics and operate in continuous time. Wireless Sensor Networks (WSNs) and
embedded systems comprise the two main cornerstones of Flight 4.0 with respect
to communication, processing, and control considering extremely resource limited
systems. However, in order for a system to be really useful and practical, it is critical
to offer adequate performance capabilities and high degree of flexibility with respect
to remote monitoring and actuation systems. In that respect, messaging [3] is a tech-
nology that enables high-speed, asynchronous, highly reliable machine-to-machine
or even program-to-program communication. Such communication is possible by
exchanging data packets, called messages, to each other.

Respective solutions offer important advantages in terms of remote communica-
tion, platform language integration, and asynchronous communication, following a
send-and-forget approach. Additionally, communication reliability is also a major
concern, typically utilizing a store-and-forward approach for transmitting messages,
while asynchronous communication enables the decoupling of the sender from the
receiver. Finally, it isworth noting that amessaging systemacts as amediator between
all programs that can send and receive messages (either residing in the same physical
computer or being distributed amongst different ones). However, message passing
technologies are characterized by a complex programmingmodel since asynchronous
messaging systems require developers to work following an event-driven program-
ming approach [3].

Driven by the necessity for holistic solutions, in this chapter a system-wide, end-
to-end architecture for Flight 4.0 systems is envisioned offering critical advantages,
features, and services. The respective technologies and proposed designs emphasize
on implementing a robust as well as efficient infrastructure based on IoT (Internet
of Things) technology, which is able to support high-performance fault-tolerant sys-
tems. It is argued that, based onmessage passing communication technology and uti-
lizing Commercial-Of-The-Shelf (COTS) technologies, the respective architectures
can yield an abstraction layer that hides effectively all technology heterogeneity
and/or peculiarity. In Fig. 4.1, a high-level end-to-end architecture of an IoT plat-
form targeting Flight 4.0 scenarios is depicted. With respect to this vision, the rest
of the chapter is segmented into two main sections corresponding to the two main
segments of the architecture. On one hand, the left-hand side of the architectures
focuses on the basic sensors, modalities, and actuators being aggregated to the IoT
system gateway interconnecting the cyber with the physical domain and dealing with
specialized technologies tackling specific requirements and needs. On the other hand,
the right-hand side of the figure corresponds to the required backend infrastructure,
effectively interacting with the gateway level, which is critical when aiming to offer
advanced services related to data storage, handling, processing, and presentation to
the end user. Based on such core services, user end points related to Human-Machine
Interface (HMI), optimal performance warranty, etc. as depicted in Fig. 4.1 can be
developed and deployed.
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Fig. 4.1 Envisioned high-level IoT system for Flight 4.0 domain

4.2 Wireless Sensor Networks Paving the Way of IoT

One of the cornerstones of IoT are the wireless communication technologies that
are able to tackle the challenges created by the highly volatile, dynamic, and unpre-
dictable paradigm IoT has introduced. In this section, focusing on Flight 4.0 and
respective demanding scenarios, an attempt is made to highlight the most important
requirements and present a set of prominent mature communication protocols.

4.2.1 Technical Requirements

In this section, we identify the main requirements based on which adequate wireless
communication technologies should be adopted, configured or even extended so
as to meet the objectives of demanding IoT/Flight 4.0 application scenarios. The
respective requirements stem both from the user requirements as well as the pure
technical demands of a state-of-the-art wireless sensor network.

4.2.2 Low-Power Operation

The ability of a wireless communication to promote power consumption mini-
mization comprises a characteristic of paramount importance. Although in aviation
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domain, scarce energy availability does not strike as critical problem, one should
consider that IoT systems in Flight 4.0 effectively comprise by a group of highly dis-
tributed mobile embedded systems. Each component can have its own autonomous
power supply; it can be mounted on a person, on a device or an aircraft. But what is
critical to bear in mind is that all components must operate adequately at all times;
otherwise, the whole system may be compromised. Meeting such objective is a mul-
tifaceted task involving many critical aspects of a wireless communication platform
concerning both hardware and software aspects [4, 5].

4.2.2.1 Data Throughput Capabilities

Without a doubt, the data volume, per specific time period, a communication tech-
nology can handle comprises a critical metric in all network types. Evenmore, in sce-
narios involving highly complex and critical components such as in aviation domain,
the respective data volumes are anticipated to be rather high. Furthermore, highly
dynamic factors such as concurrent traffic flows and how they are accommodated,
especially in the case of burst traffic, make the whole problem even more challeng-
ing. Throughput capabilities depend upon the mechanisms a wireless technology
employs to assure robust communication. Through such mechanisms, each wireless
communication approach aims to, on one hand, avoid packet collisions and, on the
other hand, accurately and rapidly identify a packet collision and recover from it.
Such mechanisms include efficient clear channel assessment mechanisms, CTS/RST
control packet exchange, CRC (Cyclic Redundancy Check), and acknowledgment
mechanisms support.

4.2.2.2 Delay–Jitter Requirements

Similarly to throughput capabilities, mean delay and the respective requirements
(although posing relatively relaxed demands in typical IoT networks) pose partially
difficult to tackle, problems in Flight 4.0 domain. This is because in aviation the
respective demands are equivalent to industrial domain and there are hard real-time
requirements. The former is related to the fact that the time windows between a
request and the respective response or an event detection and the respective actuation
are particularly small. The latter is related to the fact that if the posed deadlines are not
met the whole systemmay be compromised with possibly catastrophic consequences
in terms of cost as well as human lives.

4.2.2.3 Quality of Service Support

As WSN technologies are considered as a viable solution in demanding application
scenarios such as Flight 4.0 and users tend to pose increasing demands upon the
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respective deployments, the need for advanced quality of service capabilities is anal-
ogously increasing and is expected to do so in the future. By quality of service, we
refer to the differentiated handling among data traffic flows with respect to various
(and dynamically changing) parameters as well as the differentiation among users.
With respect to such differentiation, a communication technology can apply appro-
priate methodologies to meet the different requirements posed by each category in
each particular time (to the degree that is possible). It is also valuable to allow the
developer to apply custom algorithms to apply specific policies. In the MAC layer,
such capabilities are typically dependent upon the access scheme utilized, typically
CSMA, TDMA, or a combination of these two.

4.2.2.4 Security Support

Last but not least, security support comprises one of the most important and critical
features of Flight 4.0 approach. This is because aviation represents a highly critical
IoT application domains which directly relates to safekeeping of highly private per-
sonal data as well as the adequate management and distribution of them. Security
support is comprised of three services: data privacy, authentication, and authoriza-
tion. The first one relates to the assurance that data can be “understood” (i.e., be
useful information) only by nodes that have the right to do so, while for the rest of
the nodes effectively are useless bytes. This service typically relies on the capabilities
of WSN nodes to execute sophisticated encryption algorithms offering high secu-
rity level. Consequently, the inherent support of such cipher algorithms by the used
communication technology is a significant added value. The second service allows
nodes to prove they are who they claim to be, which effectively allows accountability
and is a prerequisite for the third service which effectively determines what level of
access can a specific user have to certain data or/and functionalities.

4.2.3 State-of-the-Art IoT Technologies for Flight 4.0

Nowadays, a plethora of short-range, ultralow-power wireless communication tech-
nologies are available, all aiming at meeting the requirements posed by IoT appli-
cation scenarios. In the context of this chapter and aiming toward future Flight 4.0
adequate IoT systems, a set of prominent technologies is presented comprisingmature
solutions integrated into wide range of commercial platforms targeting diverse appli-
cation domains. The goal of this effort ismainly to extract and highlight the respective
characteristics (as well as differences) enabling the optimum selection of the appro-
priate technology with respect to specific application scenario requirements.
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4.2.4 IEEE 802.15.4 Based Solutions

Solutions of this kind are prominent candidates as they are utilized in several exper-
imental and commercial scenarios. Their communication capabilities are based on
the IEEE 802.15.4 standard finalized by October 2003 [6]. Their popularity is based
on significant advantages when aiming toward very low-power, low-complexity,
low-price, and low application demand characteristics. At the physical layer, IEEE
802.15.4 offers three possible frequency ranges, although the most popular is the
2.4GHz ISM band where 16 channels can be utilized offering the highest bit rates
equal to 250Kbps [6]. However, it is noted that at each particular moment, only one
channel can be used, thus not being a multichannel protocol. Concerning the data
transfer approaches, although IEEE 802.15.4 defines approaches for both contention-
less and contention-based access schemes, the respective platforms usually imple-
ment and utilize only simple contention Carrier Sense Multiple Access (CSMA)-
based approaches. Following such an approach, all nodes are peers (i.e., there is
no coordinator) and sense the transmission medium for two reasons. On one hand,
if a node wants to transmit a packet, it senses the medium until it is identified as
idle and then transmits the packet. On the other hand, from the receiver perspective,
a node senses the transmission medium in order to identify a packet transmission
toward itself. Popular IEEE 802.15.4 based platforms include TelosB and MicaZ.
TelosB comprises probably the most well-known WSN platform upon which many
projects have been based on [7, 8]. As expected, it offers an IEEE 802.15.4 com-
patible RF transceiver which can deliver 250Kbps bitrate at the 2.4 GHz frequency
band. Processing is based on the widely utilized Texas Instrument MSP430 16-bit
microprocessor. Concerning memory capabilities, the developer is provided with a
48KB program flash, 10KB data RAM, and a 1MB external flash. It is noted that,
although now TelosB is available through Memsic Co. [9], there are other platforms
which under different brand names offer identical characteristics such as [8, 10].
Shimmer (2R version) is also a very interesting case since it offers a very versatile
environment integrating a wide range of sensors. MicaZ also comprises a prominent
platform used in various scenarios, offering analogous characteristics as TelosB.
The main difference concerns the processing module, which is based on an Atmel
ATmega128L for both the radio and processing tasks, offering 128KB program and
512KB data memory, while TelosB motes are USB programmable and chargeable,
thus offering enhanced usability compared to MicaZ where a separate programming
module is required.

4.2.5 Bluetooth-Based Solutions

Bluetooth is a wireless radio specification designed to replace cables as the medium
for data and voice signals between electronic devices. The specification is defined
by the Bluetooth Special Interest Group (SIG) which is made up of over 1000 elec-
tronics’ manufacturers. Intended primarily for mobile devices, Bluetooth’s design
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places a high priority on small size, low power consumption, and low costs. The
Bluetooth specification seeks to simplify communication between electronic devices
by automating the connection process. Bluetooth radios operate in the unlicensed
2.4GHz Industrial, Scientific, and Medical application (ISM) frequency range. This
frequency is alreadywidely used by devices such asmicrowave ovens, babymonitors,
cordless telephones, and 802.11b/g wireless networking devices. In order to avoid
interference from these devices, Bluetooth uses a technology called spread spectrum
frequency hopping. Spread spectrum frequency hopping changes the transmission
frequency up to 1,600 times per second across 79 different frequencies. As a result,
interference on any one of those frequencieswill only last a fraction of a second. This,
coupled with the limited range of Bluetooth radio transmitters, results in a robust
signal that is highly tolerant of other devices sharing the same frequency. Bluetooth
devices automatically attempt to communicate whenever one device comes within
the range of another. Bluetooth devices discover each other and initiate communi-
cation via inquiry and page transmissions. In addition, they have the ability to form
ad hoc networks. The topology of these networks is both temporary and random.
An ad hoc network of two or more Bluetooth devices is called a piconet. When two
Bluetooth devices initiate a connection, they automatically determine if one device
needs to control the other. Generally, the device that initiates the communication
assumes the role of master and exercises certain controls over the other members
of the piconet which are known as slaves. Upon establishing a piconet, the slave
devices synchronize their frequency hopping sequence and system clock with that
of the master in order to maintain their connection. A master device can have up to
seven slaves. A slave in one piconet can also be the master in another, thus allowing
piconets to overlap and interact forming what is known as a scatternet. Contrary
to IEEE 802.15.4 based solutions, where all relative platforms are characterized by
analogous capabilities, the platforms in Bluetooth-based solutions can vary signifi-
cantly depending both on the version of the protocol supported, and evenmore on the
characteristics of the specific implementation. Regarding data rates, solutions cov-
ering a wide range from 300Kbps up to 1.5Mbps can be found. Indicative examples
of relative solutions include Shimmer [8] and MoviSens [11] platforms. The former
is utilized in the Roving network-based Bluetooth modules [12].

4.2.6 Bluetooth Low Energy Based Solutions

Bluetooth Low Energy (BLE) represents a different technology from classic Blue-
tooth (and in fact incompatible technology) being promoted by the Bluetooth Special
Interest Group (SIG). Benefiting by the huge successful classic Bluetooth, it shows
significant dynamics compared to analogous technologies being incorporated inmost
mobile and embedded devices. Furthermore, it offers a high degree of flexibility con-
cerning both implementation and communication approaches. Thus, multiple ways
for nodes to communicate are supported through different data structure profiles so
as to best fit the application requirements. Being a protocol in progress regarding



48 C. P. Antonopoulos et al.

various aspects, it also offers the added value of allowing developers to becomemem-
bers of the Bluetooth SIG, gain valuable insight on future features of the standards,
and if possible even proposal respective approaches.

4.2.7 Bluetooth Low Energy Device Interfaces

Bluetooth Low Energy (BLE), a distinctive feature of the Bluetooth 4.0 specifica-
tion, constitutes an emerging wireless technology for short-range communication
which is expected to be increasingly employed in numerous control and monitoring
applications that require low-power operation. Below, the main characteristics and
mechanisms of the Bluetooth protocol stack are described, as well as the referenced
topology and network roles which refer to the nodes in a Bluetooth network [13].

Based on the structure of the protocol stack used in previous versions, the BLE
protocol stack consists of a host and a controller, which are separated by a standard-
ized interface, the Host Controller Interface (HCI). As shown in Fig. 4.2, the host

Fig. 4.2 Bluetooth Low
Energy (BLE) core system
architecture
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is a logical entity defined as a set of layers below the application layer (or non-core
profiles) and above HCI, typically running on an application processor and including
the Logical Link Control and Adaptation Protocol (L2CAP), the Attribute Protocol
(ATT), the Generic Attribute Profile (GATT), the Security Manager Protocol (SMP),
and the Generic Access Profile (GAP). On the other hand, the controller is defined
as a set of layers below HCI, typically being implemented on a small System-on-
Chip (SoC) that provides wireless communication via a radio module and including
the physical layer and the link layer. An implementation of the host and the con-
troller may contain the respective parts of the HCI, the upper, and the lower ones,
respectively.

BLE defines 40 radio frequency channels in the Industrial Scientific Medical
(ISM) band of 2.4GHz with 2MHz channel spacing. However, those PHY chan-
nels are used for different operations, namely advertising and data transfer, thus
resulting in three advertising channels which are used for broadcast transmission,
device discovery, and connection establishment, and 37 data channels (the rest of the
band) which are used for bidirectional communication between connected devices.
In order to deal with the interference imposed by other wireless technologies using
the 2.4GHz band (e.g., Wifi), as well as wireless propagation issues in general (i.e.,
multipath, fading), an adaptive frequency hopping mechanism is used, selecting one
of the 37 available data channels for communication between connected devices
during each particular time interval (the sequence of which is determined at the
beginning of the connection), as shown in Fig. 4.3. The reached data rate is about
1Mb/s. The link layer provides the basic acknowledgement/repeat request (ARQ)
protocol in BLE. When a device only needs to broadcast data, it forms advertising

Fig. 4.3 Advertising events and connection events
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packets and transmits them over the advertising PHY channels in the time intervals
defined by the advertising events, and therefore it needs to become an advertiser.
On the other hand, when a bidirectional data communication between two devices is
required, they need to be connected to each other, thus forming a piconet, where the
advertiser device becomes a slave device and the initiator device becomes the master
device.

4.3 IoT Backend Infrastructure for Flight 4.0

Backend infrastructures comprise the secondmajor cornerstone of IoT since they rep-
resent that base upon which applications, functionalities, and services are designed,
implemented, commissioned, and managed. As mentioned in introduction and in
relation to Fig. 4.1 respective upon respective technologies, all critical core services
as well as end-user applications are developed. The main goal of this section is, on
one hand, to identify the main goals/challenges such infrastructure should meet to
offer viable solution to Flight 4.0 application scenarios. On the other hand, a well-
focused survey is offered concerning prominent existing solutions highlighting the
most relevant characteristics, features, and advantages each offers toward addressing
presented challenges.

4.3.1 Key Challenges

Driven by the requirements posed by Flight 4.0 applications, we need platforms that
have been designed specifically to address all these critical emerging challenges.
Additionally, the respective requirements are considered in conjunction with the
rapid and multifaceted advancements in embedded systems and end-to-end wireless
communication technologies.

During the last years, IoT platforms have been employed for supporting Flight
4.0 applications of increasing complexity. Additionally, the respective complexity
is quite multifaceted since it concerns communication, processing as well as data
storage aspects of a complete Flight 4.0 system. Consequently, a critical objective
for these platforms is to address all these challenges in themost efficient and versatile
way.

Regarding the communication perspective of Flight 4.0 systems, typically, a short-
range wireless communication protocol enables data aggregation to a central point
(often indicated as Gateway). Although a plethora of different communication tech-
nologies (mainly originating from WSN research domain) are available, they offer
diverse characteristics exhibiting high degree of incompatibility. In that respect, the
forthcoming platforms must offer highly efficient gateway designs able to support
the most prominent short-range wireless communication technologies such as IEEE
802.15.4 [14], ZigBee [15], Bluetooth [13], BLE [16], and Z-Wave [17]. Also, a
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critical goal of the design is to facilitate the continuous development and integration
of new solutions. Communication complexity, however, is also related to the efficient
transfer of data between the gateway and remote installations like service providers,
databases, graphical user interfaces, etc. Consequently, forthcoming platforms must
be enforced to use more contemporary approaches than the traditional HTTP com-
munication approach, such as message passing communication aiming to support
increased communication complexity.

Furthermore, the increased functional complexity calls for new processing capa-
bilities in the future Flight 4.0 systems. In order to address the respective challenge,
novel gateway designs must have the ability to support data acquisition by different
modalities as well as exploiting different communication technologies. Additionally,
the acquired data are synchronized and processed in a homogeneous way. In this way,
sophisticated load balancing, data merging, QoS, prioritizing, and many more mech-
anisms can be supported. This approach also facilitates real-time data processing
and event detection which is of paramount importance in demanding applications in
the aviation domain. Another critical aspect of processing has to do with the ability
to handle big data. This is due to the fact that Flight 4.0 systems can be effectively
comprised of thousands of nodes potentially creating huge volumes of data. Given
that the generated data are heterogeneous, the traditional model with homogeneous
database schemes cannot be longer used. The forthcoming platforms must adopt
heterogeneous database schemes, where each database scheme must be utilized for
a single purpose, which perfectly fits the data that would be stored. Based on such
technologies, the database to be formulated should be characterized by an increased
degree of flexibility and reliability, where consequently highly efficient data queries
can be defined, facilitating fast and accurate data analytics.

Data storage represents also an aspect where novel approaches must be adopted,
especially with respect to distributed, networked, and collaborative systems. Forth-
coming Flight 4.0 systemsmust be designed with a database storage plan, which sup-
ports a full set of distributed operations, utilizing a heterogeneous database scheme
using SQL and NoSQL databases [18]. Based on this approach, a highly efficient
interconnected and collaborative constellation of database facilities is provided that
is able to support even the most demanding application requirements. Another crit-
ical advantage of the aforementioned distributed approach concerns the increased
fault tolerance through the complete avoidance of single-point failure scenarios. It
is also noted that the collaborative functionality is necessary to be provided also at
gateway level, for such platforms. Specifically, using message passing communica-
tion technologies, it is possible to support complex collaborative communications
between gateways, creating an ecosystem of intelligent processing entities that is
able to better monitor, encode, and even interact with the physical world. In this way,
the physical environment and the human activities can be effectively addressed.

Flight 4.0 systems are usually comprised of a number of highly scattered nodes
being able to interact with the real world, thus supporting a wide range of diverse
applications. Therefore, controlling, optimizing, adjusting, and enhancing a con-
tinuously expanding Flight 4.0 system by physically accessing each node or/and
component is unpractical, cumbersome, and in many cases virtually impossible.
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Consequently, it is critical to support real-time remote control of all components
as well as on-the-fly functional enhancements and service optimization. Both these
challenges are of paramount importance for a Flight 4.0 system design. Remote
monitoring, management, and control are possible using message passing commu-
nication technologies like MQTT and MQTT-SN. Finally, a valuable characteristic
of such a platform would be the capability to provide end users/service providers an
easy way to implement, test, and finally deploy a new service.

4.3.2 State-of-the-Art Backend Infrastructure for Flight 4.0
and Beyond

Flight 4.0 is heavily dependent on communication for conveying sensor observa-
tions to controllers/actuators; thus, the design of the communication architecture is
a critical requirement for system functionality. Although Flight 4.0 is an emerging
domain, the IoT technology employed has been used in other domains as well, where
the architectural evolution has been shifted into systems’ integration, ensuring that
Service-Oriented Architecture (SOA) will have a major role in many branches of
technology.

In [19], it proposed an SOA-based middleware architecture, “WebMed”, through
which an interaction with physical devices becomes as easy as invoking a compu-
tation service. Emphasizing the basics of service-oriented guidelines, it is built a
loosely coupled infrastructure that exposes the functionality of physical devices to
the Web for application development.

In [20], it is proposed another SOA-based architecture using a standard-based
software component technology, divided into a five-tier architecture, namely per-
ceive, data, service, execution, and security tier. Although SOA implementations
can be a solution for the requirements of specific companies, these implementations
are expensive, time consuming, and complex. With regards to agility, the addition of
new requirements for end users in SOA implementations requires a lot of complex
configurations, which consume a lot of time.

In [21], a commercial IoT platform, enControl, is proposed as an end-to-end
smart home solution. End users of EnControl are able to monitor and remotely
control their homes through any internet-enabled device. The EnControl platform is
divided into threemain components, namely, Home devices, IoT Platform, Graphical
User Interface. At home level, EnControl is composed by end devices (sensors and
actuators) and Gateways, which communicate using Z-Wave radio technology. The
communication between the home level devices and the core system is achieved by
a REST API implementation, in which end user can trigger actions, using EnControl
graphical user interface.

Another commercial IoT platform, PLAT.ONE [22], provides a complete solu-
tion for IoT. It utilizes a mixed SOAP-based and REST-based architecture for data
collection and integration. In addition, it offers a graphical user interface for users to
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control the data streams and to develop their own components in order to control and
view data streams. As far as implementation is concerned, it is implemented as an
extendable and heterogeneous data storage scheme using SQL andNoSQL databases
for storing data streams.

Finally, LairdTech [23] proposes an end-to-end platform, specialized for con-
necting cars. LairdTech has implemented a complete solution for cars, in which
embedded devices communicate using Bluetooth low energy wireless technology, in
order to collect data from different sensors and on top of that implement application
for analysis.

All the above proposals although comprising valuable sources of information,
ideas, and design aspects, they are also characterized by critical limitations and short-
comings. Probably, the most important concerns the fact that they are closed plat-
forms not allowing the developer to apply and test novel approaches and extensions.
Furthermore, all already existing solutions are based on specific communication
protocols and technologies, thus offering low degree of adaptability to continuously
evolving ICT domains. The same shortcoming comes into play with respect to how
services can be developed and easily deployed, and multiple different databases can
be supported according to specific requirements and many more engineering design
and implementation aspects. In addition, solutions proposed for Flight 4.0must target
tackling heterogeneous communication technologies, using the MQTT-SN [24, 25],
in order to hide the underlying complexity created by respective infrastructures. Last
but not least, to avoid the problems of monolithic applications and take advantage of
the SOA architecture benefits, the microservice architecture pattern has emerged as
a lightweight subset of the SOA architecture pattern [26].

4.4 Conclusion

Over the last few years, Internet of Things and Service-Oriented infrastructures
appear as prominent and mature research areas able to unite the physical and cyber
domains facilitating the expansion of demanding application scenarios such as Flight
4.0. However, in order, the respective solutions need to effectively tackle hetero-
geneity while exhibiting high degree of flexibility and configurability. Driven by this
requirement, this chapter tries to identify, present, and highlight the main require-
ments and challenges involved in such endeavors. To achieve this objective, a com-
plete end-to-end architecture is divided into two main segments: On one hand, the
IoT, wireless sensors part pertaining to flexible, robust, and versatile interaction with
a wide range of heterogeneous sensors and actuators; and on the other hand, the
backend architecture offering all required infrastructure allowing efficient data stor-
age, analytics, monitoring, processing, and presentation. Finally, concerning both
segments of a complete solution, state-of-the-art technologies are presented able to
support the required services and offer competitive advantage for current but most
importantly future Flight 4.0 platforms.
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Chapter 5
Big Data and Data Analytics in Aviation

Gerrit Burmester, Hui Ma, Dietrich Steinmetz and Sven Hartmannn

Abstract Big Data technology in the field of aviation has emerged in recent years.
Continuously growing amounts of data sources such as sensors, radars, cameras,
weather stations, airports, etc. produce terabytes of high dynamic data each second.
The future aviation concepts require modern data storing, data processing, and data
analyzing technologies. The extraction of meaningful knowledge from the given data
is a major challenge, trends, cross-connection, correlations, etc. have to be identified.
Real-time critical tasks increase additionally the technology requirements and need
innovative solutions. The application of Big Data technology in aviation context
optimizes safety aspects, fuel consumption, maintenance processes, flight schedul-
ing, etc. This chapter describes a process of Big Data application and summarizes
relevant actual Big Data methods in the aviation domain.

5.1 Introduction

Aviation is growing steadily, which contributes to increasing amount of data sets
in this industry and leads to growing interest in using Big Data technologies [1].
The term Big Data refers to the big volume of the data sets in large numbers, their
variety, and the velocity requirements of the provision of the data. Furthermore, it
is characterized by variability, which addresses the consistency of a data set and
veracity, which refers to the quality of a data set. Both result due to weak structure
of a data sets, missing or inaccurate values [2, 3].
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In aviation, Big Data has been receiving a wide interest. It is getting more and
more important due to ever increasing amount of data through integration of emerging
data sources, new technologies, increasing number of aircraft, and sensors in the past
decades. The analysis and interpretation of produced data has the potential of saving
resources such as operating costs or energy consumption and predict informations
for decision-making, e.g., emergency situations [4]. Huge amounts of fast changing
heterogeneous data are available in aviation through various sources such as all types
of sensors from aircraft and airport, civil andmilitary databases,maintenance centers,
social media platforms, or Internet in general. The composition of data integration,
data management, data preprocessing, data mining, and data visualization prepares,
analyzes, and presents the data to be used in long term and real time. The results are
provided for all stakeholders from flight crew and passengers to maintenance crew
and system designers [5].

This chapter provides an overview about the Big Data and data analytics and their
applications in aviation. It will further elaborate on the domain-specific challenges.

5.2 Big Data: An Overview

The literature offers many definitions of Big Data [6–9]. Generally, these describe
Big Data as technology, which process complex data, high dynamic data, etc., which
cannot be handled in traditional manners. It is classified through five characteristics
[10–13]:

• Volume: The quantity and the number of the data sets can be so big that conven-
tional methods cannot analyze the huge amount of data. In aviation, this includes
all data sources from aircraft, airports, and institutions somehow connected to
them, which could be databases of maintenance centers, weather stations, satellite
networks, and the Internet in general.

• Variety: The data sets can have heterogeneous formats such as tables, videos,
vectors, and more. Those data sets cannot be integrated easily, because of different
structures, schema, and the general problem of merging sources, such as schedules
of different airports, weather, and radar data or pilot-assistant systems.

• Velocity: The time to generate, analyze, and process data can be very small with
respect to its volume and the speed of the growing of data sets. For example,
there are around 5.000 sensors in a Pratt & Whitneys Geared Turbo Fan (GTF)
generating over 10GBof data per second to be processed in real time and evaluated
with other Big Data sources [14].

• Variability: There can be inconsistencies in the data sets, which make it harder to
process them. Such failures can arise from faulty sensors, errors in data collecting,
or also through system failures.

• Veracity: The quality of the data sets can vary inside and between the different
sets. An example in aviation is the reports of maintenance services, which can
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differ in its execution or differences in the quality of sensors leading to uneven
outputs.

The three characteristics volume, variety, and velocity are the most important pre-
requisite to define Big Data, since some data sets can have negligible problems with
variability and veracity. The combination of the three main characteristics is manda-
tory for a use case to be considered as a problem,where BigData technologies have to
be used. In aviation, the size of data sets and the amount of data generated per second,
analyzed, and interpreted for an application can be very high. There can be cases in
terabytes per second scale, where the data sets have heterogeneous formats and types
[14]. The quality of the collected data can vary in great extent also. It may require to
be processed and transformed, concerning its quality and consistency. Deficiencies
while recording or logging usually lead to incomplete data sets and eventually affect
any analysis pattern itself. The data can have various types, but even the same type of
data may require to be merged through robust and reliable procedures, which prevent
creation of incorrect or even redundant data sets.

5.3 Big Data Challenges in Aviation

The ever increasing number of manned and unmanned systems in the last decades is
leading to various challenging Big Data problems. Platforms produce data through
communication between each other and their automation and autonomy require data-
intensive activities such as machine vision and machine learning. Furthermore, net-
works of manned and unmanned platform and ground entities are envisioned to be
coordinated and cooperated through shared data. Last but not the least, the number
of platforms is expected to increase exponentially with the rise of urban aviation
projects such Uber Elevate [15]. This can lead to the integration of problems that
have so far been less strongly investigated in the aviation sector, such as platoon
routing problems, which have been well researched for ground vehicles but only
initially for aircrafts [16, 17]. Thereby, even more rapidly changing, heterogeneous
data regarding fulfillment of user needs and safety of all participants has to be con-
sidered. Additionally, the interpreted information, such as historical data, is also
growing rapidly in aviation.

Utilization of Big Data is becoming critical to avoid accidents, especially for
unmanned platforms. For this purpose, large data stream arose from the communica-
tion between the aircraft and other sources have to be analyzed in real time to adjust,
for example, the trajectory to prevent mid-air collision.

Inmany fields of aviation such as logistics, customer services, pilot, and passenger
safety or marketing, big amounts of data needs to be comprehended to improve the
processes regarding safety, efficiency, productivity, and economy. There is a growing
interest in developing Big Data platforms for aviation. The civil aircraft Big Data
platform which is proposed, in [18], collects data from aircraft, airlines, airports, and
other services connected to aviation to provide an airline schedule and maintenance
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plan besides other benefits such as better service for customer and a bigger throughput
of them, earlier adaption of weather conditions, savings in fuel and time, or also a
better timemanagement for passengers. In [19], a cloud-based avionics data system is
presented with efficient functions of data collection, data classification management,
storage, and analysis. The aim is to process big amounts of heterogeneous data in
real time and with a good performance and stability.

5.4 Big Data Analytics

Large number of sensors, which are embedded in aircraft, and other aviation data
sources produce large data sets every second. Further, real-time or near real-time
analysis of data is utmost importance for flight-relevant predictions and especially
in emergency situations. Collected and aggregated data needs to be preprocessed
for data mining. Discovering and extracting meaningful pattern from large data sets
includes machine learning and statistical techniques. Well-defined representation of
discovered knowledge is necessary for its interpretation and consumption.

Big Data analytics involves five steps, which are essentially independent of its
application field. Figure 5.1 depicts these steps applied to avionics.

Data from various heterogeneous sources such as sensors, cameras, radar, or
weather have to be merged into a unifying structure. Initially, the data integration
step combines different data sources to provide a unifying view of the data. Data
management then comprises the provision and extraction of the relevant data sets to
be analyzed. Data preprocessing cleans, normalizes, and reduces the data, to prepare
it for the analysis process. Predictive and descriptive data mining techniques can
then be applied to extract meaningful informations. Knowledge presentation is the
final step of the Big Data analytics, which represents the extracted knowledge for
different aviation applications.

5.4.1 Data Integration

In the first step of any approach, which processes Big Data, all data sources have
to be merged, which means the seamlessly reconciling of various and autonomy
relevant sources of data with heterogeneous structures into a uniform and suitable
structure. In aviation, the sources contain various data warehouses and data streams
from aircraft and airports as well as the inputs from their sensors and cameras and
other objects inbound through the Internet of Things. Further sources containweather
and radar data, navigational charts, and furthermore Internet sources for any relevant
information including social media and other platforms, which can be only weakly
connected to the data sets and informations may only be deducted indirect through
metadata. Also, many airlines participate in programs, which improve the general
safety of flights such as Flight OperationsQualityAssurance orAirline SafetyAction
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Fig. 5.1 Overview of Big Data analytics

Program, in which data sets are sometimes not accessible, heterogeneous regarding
their structure and schema or only available through certain protocols [20]. There-
fore, some problems, especially combining various database schemas or handling of
different representations of data, aroused from the data sources themselves, have to
be solved, so that the relevant sources can be transformed and merged.

At first the schema of the different data sources have to be unified, so that uneven
source schema will be converted through a function identifying sets of attributes,
which contain the same informations, and create a global schema for all sources
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[21–23]. Building on the results, the sources get merged through record linkage
techniques to handle data sets, which does not share a common identifier, but have
the same schema, so that data sets referring to the same logical entity of various
sources can be integrated, e.g., flight schedules from different airports, weather data
from different sources, or a combination of sensors inside an aircraft. Since problems
in the topic of Big Data often have data types of different nature, completely unstruc-
tured, or a highly heterogeneous structure traditional record linkage approaches are
inefficient, because of the classification of Big Data sets in general (volume, vari-
ety and velocity) and its manifestations in aviation. To cope with these issues, [24]
presents an overview of Big Data integration. Regarding the volume problem (of Big
Data), parallel computing through programming models, e.g., MapReduce, is sug-
gested for batch processing. The velocity aspect of Big Data can bemanaged through
incremental clustering techniques, because the fast-changing data canmake previous
linkage results obsolete and computing power is wasted. Gruenheid et al. [25] present
some incremental linkage algorithms, which can deal significantly better with the
fast velocity and have a negligible loss in quality. The algorithms are not only able to
merge updates in already created linkage but can also detect errors in the generated
structure and repair them. The variety of heterogeneous and unstructured data, for
example, maintenance orders or instructions in a free text format, is a big challenge
to integrate them into some structure. New linkage techniques tagging and matching
elements into an already existing structure are proposed as a solution to this aspect,
but are highly dependent on the basis of analytics to design. Finally, the veracity and
the variability property can be reduced through a combination of clustering and link-
age techniques. Eventually, data fusion will be applied, which refers to the problem
of combining sources defining the same things with contradicting facts. The essential
need of data fusion evolved due to various false facts spread from Internet sources. In
aviation, these problems occur relatively less, since there are more reliable sources
to interpret, where it is more important regarding truthfulness to check if sensors are
faulty. This topic will be treated more in detail in the section of Data Preprocessing.

5.4.2 Data Management

It is necessary tomaintain a software environment for datamanagement,which is able
to handle all aspects and problems of Big Data, especially analyzing and processing
huge amounts of heterogeneously data in short periods. The data management of Big
Data enables the provision of relevant data sets to perform data analysis and includes
infrastructure for fast propagation of data streams. To store and process these huge
amounts of data the use of data-warehouse-solutions are often inefficient, since data
warehouses are designed to deal with structured data. A well-working structure of
storage, which can also cope with fast response times, is possible through clusters at
multiple data centers. This system can handle the volume of Big Data better than tra-
ditional databases and enables to handle fast data streams.NoSQLdatabases store and
retrieve flexible, complex, distributed data. The horizontal scalability provides a fast
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processing of large data, and therefore they are increasingly utilized in Big Data [26].

Stored data can be efficiently processed by data processing frameworks, e.g.,
Hadooop, Apache Storm, Apache Spark, etc., which can be categorized by their pro-
cessing purposes into batch processing, stream-only, and hybrid frameworks. Batch
processing is used to process large, non-dynamic data sets. Hadoop is a promi-
nent framework, which provides batch processing on a distributed file system and
implements a MapReduce programming model. Batch processing handles large data
sets, where the time is not an important factor. Stream processing systems handle
sequences of data and process each or few data items at the same time, for example,
Apache Strom provides functionalities for fast distributed data stream processing.
Hybrid paradigm includes batch and stream processing simultaneously, and it is a
hybrid solution for general data processing. Apache Spark is a lightweight batch data
processing framework with ability to process data streams. It can be combined with
Hadoop and access different data sources, e.g., Cassandra [27–30].

5.4.3 Data Preprocessing

Faulty, incomplete and redundant information has a negative effect on the quality
of real-word data sets. The poor data directly affects the quality of data mining
performance. Data preprocessing deals with missing values, outliers, and noisy data
to clean raw data. Data normalization and aggregation convert the data into suitable
formats for data mining. Data reduction removes irrelevant and redundant attributes
and attribute values.

For example, distinguishingbetween safety anomalies andwrongdata is extremely
important in aviation context. On the one hand, the noisy data can producemisleading
safety warnings and, on the other hand, wrong filtered system failures can cause an
accident in the worst case [31, 32]. Correct detection of system failures with sensor-
data-driven techniques is a major challenge. Sensors can produce signal drifts caused
by imprecise measuring, so that the using of redundant sensors and redundant ana-
lytics can help to detect sensor faults and to minimize noisy signals. The case study
in [31] demonstrates a fault detection of the high-pressure compressor in an aircraft
engine. The generated training data sets under different engine health and varying
sensor noise conditions are assigned to different classes. The supervised methods
help distinguish between sensor noise, sensor fault, and engine fault.

Further, part of data preprocessing is a reduction of streamed and/or collected data.
The data intensity and domain complexity in aviation grows continuously, millions
of samples are produced by sensors, cameras, actuators, network connectivity, and
further services. The reduction of the data is mostly necessary to execute complex
analysis in acceptable time. The idea is to produce the same analytical results as it
would have been with reduced data [33].
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5.4.4 Data Mining

Datamining discovers useful patterns, associations, and outliers, from large dynamic
data sets to extractmeaningful information. The future forecasts can bemade by using
prediction models. For example, the data mining techniques can help to identify indi-
vidual reasons or combination of reasons for the aviation incidents and accidents.
Reference [34] divides the datamining techniques into the following areas: classifica-
tion (supervised learning), clustering, association analysis, time series analysis, and
outlier analysis. The classification process assigns the data into predefined classes.
Reference [35] uses classification techniques to predict warning level based on avi-
ation data streams. Many classification techniques are mentioned in the literature,
e.g., Support Vector Machine (SVM), Decision Tree, KNN, and Bayesian Network
[34]. Reference [36] uses decision trees to predict failures and to identify cumulative
effects such as mechanical vibrations, environmental temperature, humidity, power
supply, air pressure, functional overload, etc., in combination, which are responsible
for a failure. The decision tree construction process selects most informative pair of
factors, e.g., environmental temperature and power supply. Automatically generated
linear separation rule, from the training data set, divides the space into subsets. The
selection of further factors is applied separately to determine subsets. The leaves
represent classes and the branches decision rules. Every data input is classified or
generalized by decision procedure. Reference [37] uses Bayesian networks to predict
failure of aircraft tires. Predictions of tire conditions increase the aircraft safety and
make the maintenance process more efficient. A concept of Dynamic Data-Driven
Avionics Systems (DDDAS) has been proposed in [38] to analyze data streams from
aircraft sensors and instruments in real time to enrich computational models for pre-
dicting aircraft performance more effectively and [39] presents a multimodal data
error detection and recovery architecture. It is able to detect data errors in streaming
applications to enable automated recovery, which could compensate incorrect data
from sensor through the available redundancy of the data streams.

Clustering algorithms divide data set into different groups by predefined similarity
criteria. Different clustering paradigms are mentioned in the literature [40], e.g., Par-
titioning Clustering, Hierarchical Clustering, Density-based Clustering, Grid-based
Clustering, Spectral clustering, and further. Reference [41] groups similar aircraft
trajectories and discovers common trajectories. Initially, the algorithm partitions the
trajectories into line segments. The density-based clustering algorithm groups the
corresponding line segments with small distance into cluster. Finally, the algorithm
generates a common trajectory for each cluster. Reference [42] solves the similar
problem based on the partitioning clustering method k-Means, which clusters the
multidimensional trajectory points. Centroids of clusters are then used to construct
a common trajectory.
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5.4.5 Data Visualization

The new data mining technologies derivate more precise knowledge from large data
sets, partly in real time or near real time. Representation of produced data and knowl-
edge in the right context is very difficult task. Business Intelligence (BI) reporting is
a widely used technique to analyze and represents historical, current, or predictive
data. Reference [43] presents a BI report based on predictive maintenance system.
The report summarizes predictive technical statuses of aircraft fleets. The interactive
dashboards include aircraft positions, flight schedule, and a detailed list of techni-
cal issues. Well-defined filters allow to select relevant information according to the
aircraft engineers’ requirements. The provided information can help to decide about
service location, maintenance process, or aircraft replacement.

5.5 Conclusion

The topic of Big Data is more and more relevant today in the aviation sector. It has
a great impact in every economic field and is expected to get even more relevant
in the future. Novel Big Data technologies make it possible to meet the increasing
requirements for, e.g., UAV logistic challenges, optimization of aircraft routing,
general aviation safety, etc. The aviation industry benefits from the utilization of
Big Data methods, the process includes Data Integration, Data Management, Data
Preprocessing, Data Mining, and Knowledge Presentation. This chapter provides an
overview and summarizes the literature about Big Data in context of aviation with
elaborating the relevant examples.
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Chapter 6
Ontologies in Aeronautics

Carlos C. Insaurralde and Erik Blasch

Abstract Avionics systems are getting increasingly sophisticated, airspaces are
densely occupied, and aircraft are desired to fly in more adverse weather conditions.
These conditions increase the complexity of Air TrafficManagement (ATM) as avia-
tors and airspace controllers struggle to maintain safety while cross-checking multi-
source information, including information from Unmanned Aerial Systems (UASs).
Hence, future ATMdecision-support systems are required not only to be autonomous
and reliable complex decision-making processes with minimal human intervention,
but also must be able to deal with UAS ATM (UTM). This chapter presents the
implementation of Ontologies for NextGen Avionics Systems (ONAS) for UTM.
TheONAS approach consists of an operation framework and an ontology-based tool,
called Avionics Analytics Ontology (AAO), to support decision-making in advanced
ATM/UTM systems. The AAO entails a cognitive ATM/UTM architecture for avion-
ics analytics where an ontological database captures information related to weather,
flights, and airspace. The AAO-based decision-making process supports human Sit-
uation AWareness (SAW) as well as machine Situation Assessment (SA). The ONAS
approach presented is intended to be initially used in civil aviation. A use case along
with two different scenarios is presented for an ATM/UTM system. The scenarios
represent realistic flight situations (based on dataset from a flight tracking service)
where the ATM/UTM decisions made are supported by the AAO.

6.1 Introduction

Avionics analytics in aerospace is getting rapidly sophisticated with such improve-
ments in Command, Control, Communication, Computers and Intelligence (C4I).
One of the main purposes of C4I systems is to support Communication,
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Navigation, and Surveillance (CNS) applications such as Air Traffic Management
(ATM). Decisions in ATM are the result of the combination of a large number of
factors (e.g., weather forecasts, flight profiles, airports, Unmanned Aerial Vehicles
(UAVs), etc.). The information fusion complexity is even more increased when con-
sidering airspace users from different aviation sectors such as scientific, recreational,
commercial, civil, and military aviation.

ATM situation demands a huge workload on aircraft pilots and Air Traffic Con-
trollers (ATC) who must prioritize flight trajectories, safety, and messaging while
cross-checking information coming from the different sources, including Unmanned
Aerial Systems (UASs). The coordination of UAS and different stakeholders with
ATM, aka Unmanned Aerial System TrafficManagement (UTM), further challenges
aerospace information management systems by requiring aerospace information
management systems to be efficient with larger amounts of data. The cooperative
effort between air traffic controllers and management systems creates a need for
decision-making support for ATM/UTM to deal with the combination of informa-
tion from different sources (i.e., weather forecasts, flight profiles, airports, UAVs,
etc.).

A key avionics design challenge for futureATMDecision-Support Systems (DSS)
is autonomous, agile, and reliable complex decision-making with minimal human
intervention [1]. For example, automation is required to combine dynamic multi-
ple data inputs within an Integrated Modular Avionics (IMA) [2]. Agility requires
the ability to adapt to change. Autonomy is also afforded from machine analysis
of route changes, airspace de-confliction, Performance Based Navigation (PBN) [3],
and power assessment [4]. Hence, the Federal AviationAssociation (FAA)NextGen-
eration (NextGen) [5] and Single European Sky ATM Research (SESAR) [6] ATM
systems require a certain degree of autonomy aswell as aman–machine collaborative
operation mode to minimize the need for aviators and controllers intervention.

This chapter presents the implementation of Ontologies for NextGen Avionics
Systems (ONAS). It discusses an operation framework and an ontology-based pro-
cess to support decision-making in advanced ATM/UTM systems called Avionics
Analytics Ontology (AAO). The ONAS approach includes a cognitive ATM/UTM
architecture for avionics analytics (the AAO), Situation AWareness (SAW), and Sit-
uation Assessment (SA). It is intended to be used in civil aviation; however, it could
potentially have a future use (on-board) in autonomous UAVs (to increase auton-
omy) and even be considered in ATM operations [7]. This chapter shows a use case
for the ONAS proposed that includes two scenarios for an ATM/UTM system. The
scenarios consider semantics from updates of weather profiles, airport maps, and
route plans. The scenarios are meant to represent realistic flight situations since
they make use of real-time airspace Automatic Dependent Surveillance-Broadcast
(ADS-B) information provided by Flightradar24 [8] (a flight tracking service), and
describe flight situations where the decisions made are supported by the proposed
AAO approach. The experimental results present a Dynamic Data Driven Appli-
cation Systems (DDDAS) [9] example that leverages contextual models to support
real-time performance updates for system control.
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The rest of the chapter is organized as follows. Section6.2 discusses the role
of ontologies in ATM along with a review of existing technologies. Section6.3
introduces foundations and backgrounds for ontological decision-making support
in avionics with a focus on ONASs. Section6.4 describes the AAO as the main
pillar for the ontological decision-making support defined by the ONAS approach.
Section6.5 presents a use case along with two scenarios as application examples of
the AAO. The last section presents the concluding remarks and the way forward for
the AAO.

6.2 Ontologies in Air Traffic Management

There is an increasingly emergent interest in the use of ontologies for ATM and
aerospace technologies [10, 11]. For instance, the FAA NextGen [5] and the Single
European Sky ATM Research (SESAR) [6] systems are planning to incorporate
ontologies for named events. Figure6.1 highlights an example of how ontologies are
included in an avionics system analysis. Using the incoming data fromweather, flight
profiles, and airports, that data needs to be accessed, structured, and normalized over
related conditions. Structuring the data is enabled with templates and ontologies.
The structured ontology organizes the information (including syntactic and semantic
metadata) for analytic processing and reporting. The resulting analytics supports
visualization and decision-making for aviators and air traffic controllers. Examples

Fig. 6.1 Ontologies for avionics analytics
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includemandates, current reports, and airspace information.Hence, ontologies afford
a common method to organize, process, and share data.

SystemWide Information Management (SWIM) including the ATM Information
Reference Model (AIRM) [12], the Information Service Reference Model (ISRM),
and the SWIMTechnical Infrastructure (SWIM-TI) are being developed for air traffic
management [13]. The concept of SWIM is an emerging concept to manage infor-
mation for aviation systems for various ATM networks [14]. An AIRM example
requiring ontologies is semantic filtering of NOTices to AirMen (NOTAM) [15].

Information fusion systems rely on the data that is acquired, processed, and uti-
lized. Three steps are important in the analysis which includes data normalization,
standardization, and templating for situation analysis:

• Data Normalization. A fundamental knowledge of all fusion designs is that data
is related to the collection as it is most likely processed as a probability (e.g., Bayes
theorem). To construct a data collection into a format for analysis is the process
of normalization. For instance, the absolute value of 10,000m is relative to the
environment. If a UAV was to be separated by the 10Km limit of aircraft, it would
be conservative for close-air operations. Hence, the safe distance threshold should
be normalized to the size of the aircraft.

• Standardized Data. Data standardization includes the units, terminology, and
definitions associated with the information. For the UAV airspace example, the
information should be standardized in time (zulu), distance (meters), and direction.
An example of an ontology is Above Ground Level (AGL).

• Data Template. To determine a situation, a third step is useful (although there
could be others), such that the template of knowledge that is available. A template
could include the geographical terrain, cognitive processes, or action states. The
template enables a rapid understanding of the situation from normal operations.

Key developments for Single European Sky ATM Research (SESAR) and the Fed-
eral Aviation Administration (FAA) Next Generation Air Transportation System
(NextGen) include the potential for ontological capabilities. RainerKoelle andWalter
Strijland [16] outlined progress in 2013 for semantic assurance for systems engineer-
ing in SESAR/NextGen which provides ATM security. A key example for NextGen
system includes developments in the weather ontology, implemented in three oper-
ational capability phases [17]:

• Initial (2013): Significantly enhanced weather infrastructure providing modestly
improvedmeteorological data to all users of theNextGen air transportation system.

• Midterm (2016): NextGen begins to implement automated decision assistance
tools and algorithms for managing the airspace, requiring high-resolution weather
forecasts and observations with more accuracy and precision.

• Farterm (2022): NextGen weather must meet all meteorological and engineering
performance requirements to support the NextGen traffic management systems.

Another example is the European AIRM. Specifically, they looked at NOTices to
AirMen (NOTAM). NOTAMs provide weather and emergency updates to aviators
in the form of text messages. Using Ontology Web Language (OWL), the system
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seeks a semantic-based aeronautical informationmanagement system.With semantic
reasoning and digital NOTAMs, efforts were underway to bring structure to the
knowledge gained from text-based information.

6.3 Information Fusion

This section introduces information fusion concepts as foundations and backgrounds
for ontological decision-making support in avionics with a focus on ONASs.

6.3.1 Situation Awareness

The decision-making process is based on the four-stage loop called Observe-Orient-
Decision-Act (OODA) [18]. The OODA loop is essential for situation awareness in
information fusion [19]. Figure6.2 shows a SAW model.

SAW allows systems to understand dynamic and complex environments, and
operate with them. Cognitive SAW can be divided into three separate levels: percep-
tion of the elements in the environment, comprehension of the current situation, and
projection of future status [19].

The concepts of the OODA loop enable a processing of information. The Obser-
vation stage is the SAW perception level. The Orientation stage considers the infor-
mation acquired from the Observation stage and the knowledge represented by the
ontology, to understand the situation (SAW comprehension level). The Decision

Fig. 6.2 Situation AWareness (SAW) model
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stage is carried out at the SAW projection level. The Action stage closes the OODA
loop by carrying out plans according to the adaption made in the previous stage.

SAW involves the events, states, conditions, and activities of the environment
dynamics over time and space from which some situations arise (in particular, those
changes that occurred in the environment over some time interval). A situation is
defined by a specific state after a sequence of events (with intermediate states, and
activities with pre/post-conditions). The situation is concerned with the comprehen-
sion of the environment features, and with the evolvement of these features over
time.

SAW decision-making mechanisms are critical for problem-solving processes
that are preformed every time step for a situation from which data is collected and
processed.

6.3.2 Situation Assessment

Situation assessment takes place at level 2 (SAW comprehension) in data fusion
models. The Data Fusion Information GroupModel (DFIG) [20, 21] levels are listed
below and shown in Fig. 6.3.

• Level 0: Data Assessment
• Level 1: Object Assessment
• Level 2: Situation Assessment
• Level 3: Impact Assessment
• Level 4: Process Refinement / Resource Management

Fig. 6.3 Data fusion information group (DFIG) model
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• Level 5: User Refinement / Cognitive Management
• Level 6: Action Refinement/ Mission Management

In the DFIG model, the goal was to separate the Information Fusion (IF) (L0-L3)
and Information Management functions (L4-L6) [22, 23].

For UTM systems, there is both the resource management across Sensors, Users,
and the Mission (SUM) to coordinate with the objects, situations, and threats. The
elements of the airspace need to be provided to air traffic controllers for enhanced
SAW. Two integral concepts for Level 5 User Refinement information Fusion are
displays to support usability [24], and information management systems that are
trustworthy [25]. A binding element between the levels of information fusion is an
ontology to reduce uncertainty [26, 27].

6.4 Ontological Decision-Making Support

This section describes the AAO which is the main pillar of the ontological decision-
making support defined by the ONAS approach proposed.

6.4.1 Cognitive Model

The cognitive model represents the knowledge required to endow the avionics
decision-making support with intelligence. It relies on data, information, and knowl-
edge. However, they are not definitely the same but related. Data are usually raw or
preprocessed. Information is data with meaning. Information becomes knowledge
when there is a purpose and a potential to generate action. Knowledge is the intel-
lectual machinery which makes possible to achieve goals (by carrying out actions)
and creates new information [28].

Knowledge can formally be represented by means of Description Logic (DL).
The DL architecture has two main components: TBox and ABox [29]. TBox
entails inclusion assertions about properties from concepts and roles. Abox entails
instance assertions such as those for individual objects [30]. The method includes the
following:

• TBox component is a terminological formalism (terminology; system description
in terms of controlled vocabularies); whereas

• ABox component is an assertional formalism (assertions about individuals).

The combination of the TBox and the ABox forms the knowledge base which is
described through ontologies. The main ontology elements are concepts (classes),
properties, instances (individuals), and assertions. A concept represents a set of
entities or things within a domain. Properties define either relations between an
individual and a value, or between two individuals, called data type properties and
object properties, respectively.
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The TBox module defines the concepts and properties in a domain in addition
to specifying terminological axioms for every atomic concept. Axioms are used to
constrain the range, and domain of the concepts, e.g., an airplane is an aerospace
vehicle that has navigation capabilities. Assertions are statements about facts or
beliefs. The ABox module contains a finite set of assertions for the classification of
individuals and their properties.

Inference over the ontology (TBox and ABox) is provided by a reasoner. The
knowledge representation approach proposed in this chapter is based on ontology
and reasoner as described above. An ontological database captures information (data
alongwithmeaning) as to concepts, entities, and relations in order to build knowledge
related to weather, flights, and airspace. The ontology enables Artificial Intelligence
(AI) reasoning to make decisions based on the knowledge stored and the current
situation estimates.

6.4.2 Semantic Ontology

The ontology syntax (symbols and rules) is based on the DL syntax structure. How-
ever, the implementation language for the ontology ultimately defines the syntax to
semantically specify and describe ontology elements. The OWL and the Protégé tool
[31] are selected to realize the ontology for the approach proposed.

The main OWL components to be created are the concepts (classes), properties
for individuals, and instances of classes (individuals). These components are set for
Avionics Analytics Ontology (AAO) as follows:

• Classes (concepts) are conceptually defined as classes (special datatype) in object-
oriented programming languages. Thus, they can be atomic classes (stand-alone
ones) or associate classes (subclasses) alongwith is-a links. ThemainAAO classes
are vehicle (aircraft), radar, criteria, pilot, route, airport, runway, status, airspace,
weather, and metrics. Figure6.4 shows the above is-a relations between classes.

• Properties (roles) are basically relationships between classes (or eventually
individuals). The OWL allows for properties on objects (based on classes)
or data (specific values). The first version of AAO only includes properties
for objects as follows: hasRadar, hasPilot, hasRoute, hasTakeoff,
hasLanding, hasAirspace, hasRunnay, hasStatus, hasVeracity,
and hasWeather.

• Individuals (instances) are instances of classes (objects), e.g., a Boeing 747-800
is an individual (instance of the class aircraft).

DL operators are considered as different types of property restrictions in ontologies:
(1) quantifier restrictions such as existential and universal restrictions, (2) has value
restrictions (counting operators such as less than or equal to and more than or equal
to), as well as (3) cardinality restrictions such as minimum and maximum cardinal-
ity restrictions. Also, complex classes can be created by means of simpler classes
described based on logical operators like OR and AND.
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Fig. 6.4 Main OWL components of the AAO

Property restrictions along with classes and individuals are the building block
to define axioms. Terminological axioms (usually based on operators such as
inclusion, equivalence, etc.) are in the TBox, e.g., Aircraft_A subclass of
AircraftcannotLand and AircraftcanTakeoff, and ClearSky
subclass of GoodWeather and VeryGoodWeather. A set of assertional
axioms (facts or assertions) are in ABox, e.g., AircraftcanLand equivalent
to Aircraft and (hasRoute only Landing), and VeryGoodWeather
equivalent to Weather and (ClearSky or CloudedSky).

The ABox and the TBox form the AAO knowledge base and are shown in Fig. 6.5.
Details of the TBox and ABox axioms are available in [32].

6.4.3 Ontological Reasoning Process

Reasoners are the engine for the knowledge-based queries. Reasoners not only apply
inference rules but also check semantic consistency on ontologies. These reasoning
engines can deduce logical questions from axioms defined in ontologies. Figure6.6
shows the asserted classes (considering properties and terminological and assertional
axioms) of the AAO along with their is-a relations.

Figure6.7 shows the inferred classes of the AAO as result of executing the rea-
soner. Figure6.7 shows some examples of AAO inferences as follows (from top to
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Fig. 6.5 AAO knowledge base: TBox and Abox

Fig. 6.6 Asserted AAO classes

bottom). Airport I, II, and III are take-off and landing airports (aircraft can take-off
and land). Airspace I, II, and IV are flying airspace. Routes C and D have landing
runways. However, Route D has no take-off runway. Aircraft C and D can land in
their corresponding airports (e.g., Aircraft C with Route C). Bad weather includes
storms and thunderstorms as supplied by NOTAMs.
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Fig. 6.7 Inferred AAO classes

6.5 Use Cases

This section presents application examples of the approach proposed in this chapter.
They are based on realistic scenarios.

6.5.1 Airspace Situation

The case study is meant to be as realistic as possible. Thus, it involves a dataset from
Flightradar24 [8]. The dataset records all flights of aircraft with ADS-B transpon-
ders. It has 390,607 records generated between 17:00 and 18:00 UTC on April 1,
2017 (approx. 109 records streamed per second) for flights all around the world.
Nevertheless, there is about a revisit rate of 30 second on every aircraft.

The airspace area of interest is that from the US airspace, entailing arrivals from
the east of Los Angeles International Airport (LAX), departures and arrival from
the north of Dallas/Fort Worth International Airport (DWF), departures from Lake
City International Airport (SLC), and departures from Tampa International Airport
(TPA). The flights considered are Flight AA2250 (American Airlines from DFW to
LAX), Flight AA2629 (American Airlines from SLC to DFW), and Flight AA2488
(American Airlines from TPA to DFW). The radars that detect the above flights
(according to the ADS-B dataset used) are F-KLGB3, T-KFUL8, and F-KEMT2
for Flight AA2250. T-KNFW5, T-KDFW1, and F-KDAL1 for Flight AA2629, and
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T-MLAT2, and T-F5M for Flight AA2488. They usually track aircraft depending on
how far aircraft are from the radars and what destinations the flights have.

F-KEMT2 usually tracks aircraft approaching the US west coast (southwest loca-
tions) for LAX, T-KFUL8, and F-KLGB3 usually track aircraft approaching or
departing from the east of LAX. T-KNFW5 often tracks aircraft coming from the
northwest of DFW, and T-KDFW1 and F-KDAL1 usually track landed or arriv-
ing/departing flights in DFW. T-MLAT2 tracks aircraft leaving the west coast of
Florida, and T-F5M tracks aircraft coming from the southeast of DFW.

6.5.2 Application Scenario 1: UAVs Not Present

Scenario 1 considers the above three flights, i.e., Flight AA2250 (American Air-
lines from DFW to LAX), Flight AA2629 (American Airlines from SLC to DFW),
and Flight AA2488 (American Airlines from TPA to DFW), and the four airports
mentioned above.

Flight AA2250 took off from DFW and is scheduled to land in LAX. Flight
AA2629 took off from SLC and is scheduled to land in DFW. Flight AA2488 took off
from TPA and is scheduled to land in DFW. It is assumed that weather conditions are
very bad in the airspace en route to DFW for Flight AA2629 (from SLC). However,
weather conditions are good for DFW and in the airspace en route to DFW for Flight
AA2488 (from TPA) of DFW by the time both flights have scheduled their landing.
The weather is very good for LAX.

LAX has four runways: runway 06L/24R, runway 06R/24L, runway 07L/25R,
and runway 07R/25L. All of them are fully available (take-off and landing). DFW
has seven runways: runway 13L/31R, runway 13R/31L, runway 17C/35C, runway
17L/35R, runway 17R/35L, runway 18L/36R, and runway 18R/36L. Two runways
are fully available for take-off and landing, three runways are only available for
take-off, one runway is only available for landing, and the remaining runway is not
available at all. Runways at SLC are assumed to be operational just for take-off, and
runways at TPA are assumed to be all fully operational. The status of the runways
is not actually the ones from the date of the dataset since they are assumed to make
scenario 1. Figure6.8 shows scenario 1.

The information provided by the AAO can be visualized by air traffic controllers
to support their decisions on the above situation (also, aviators and pilots of remotely
piloted aircraft could make use of this information). They can run AAO queries as
to the impact of weather conditions on the flights and availability of runways. The
query results are suggestions about what to do or best to do. Figure6.9 shows queries
for the above inquiry and their responses from the AAO.

The query results suggest that (from left to right) (1) Flight AA2250 will be able
to land as planned (actually, it is what really happened), (2) Flight AA2629 should
be advised to change the original route in order to avoid the bad weather, and then
land as expected in DWF, and (3) Flight AA2488 will not be able to land as it is usual
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Fig. 6.8 Scenario 1

Fig. 6.9 Query results to assess situation from scenario 1

done for aircraft coming from the southeast of DWF (runway 13L/31R, 17L/35R,
17C/35C, and 17R/35L) but should be advised to land in 18L/36R, 18R/36L, or
13R/31L (west runways).
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6.5.3 Application Scenario 2: UAVs Present

Scenario 2 considers Flight AA2250 when it is about to land in LAX (17:11:57
17:16:00 UTC). The airplane has descended from altitude 2575 feet down to 2200
feet (17:11:5717:12:22UTC), and from750 feet down to0 (17:13:5717:16:00UTC).
Scenario 2 supposes there are a LargeUAV (large-unmanned helicopterwhichwheel-
base is 10 m) and a Medium UAV (a recreational drone which wingspan is 1.8 m)
nearbyLAXairport by the timeFlightAA2250 is descending as specified above.Both
UAVs are flying around LAX airport during the landing of Flight AA2250. These
UAVs fly high enough to dangerously come close to Flight AA2250 while land-
ing. The large UAV (LUAV) is of concern for the descent from 2575 to 2200 feet,
and the medium UAV (MUAV) for the descent from 750 to 0 feet. The former has a
contactable remote pilot and is more than 800 m (first descent segment) and 100 m
(seconddescent segment) away fromFlightAA2250. The latter has a non-contactable
pilot and is less than 300m (first and second descent segment) away from Flight
AA2250. Figure6.10 shows scenario 2.

Scenario 2 also estimates veracity of the AAO-based decision-making process by
only assessing sensitivity of the information providedby the radars. The range defined
for sensitivity is as follows: 0–5%: Very low sensitivity, 5–25%: Low sensitivity,
25–70%: Regular sensitivity, 70–95%: High sensitivity, and 95–100%: Very high
sensitivity. The veracity metrics (total veracity) is given by the multiplication of
each sensitivity involved in the above process.

Figures6.11 and 6.12 show AAO query results (including sensitivity met-
rics) for scenario 2 along with AAO queries for each of the radars that detect
the UAVs. T-KFUL8 detects Flight AA2250 (from 2575 to 2200 feet), F-
KEMT2 detects Flight AA2250 when it descends from 750 to 0 feet, and

Fig. 6.10 Scenario 2
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Fig. 6.11 Query results to assess situation from scenario 2 for descent from 2575 to 2200 feet

Fig. 6.12 Query results to assess situation from scenario 2 for descent from 750 to 0 feet
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F-KLGB3, T-KFUL8, and F-KEMT2 can detect both UAVs. T-KFUL8 is consid-
ered to have a sensitivity of 1, F-KEMT2 is considered to have a sensitivity of 0.8,
and F-KLGB3 is considered to have a sensitivity of 0.5 when detecting the UAVs
in the first descent segment (2575 to 2200 feet). This assumption is done by taking
T-KFUL8 as a reference radar since it detects Flight AA2250. Therefore, veracity
is 45% when the decision is made based on the above three radars detecting the
UAVs, 80% when the decision is made based on T-KFUL8, 50% when the decision
is made based on F-KLGB3 and F-KEMT2, and 100% when the decision is made
based on T-KFUL8.

The query inference results suggest that (from left to right) (1) LUAV andMUAV
have some chances of collision (medium risk of collision) and the veracity of this
query is based on a sensitivity of 100% when T-KFUL8 detects the UAVs and Flight
AA2250 (2) LUAV and MUAV have low chances of collision (low risk of collision)
and the veracity of this query is based on a sensitivity of 80% (low to make a trusted
decision) when F-KEMT2 detects the UAVs, and (3) LUAV and MUAV have little
chances of collision (very low risk of collision) and the veracity of this query is based
on a sensitivity of 50% (very low to make a trusted decision) when F-KLGB3 detects
the UAVs. The first suggestion of a collision is the most veracious out of the three
suggestions.

F-KEMT2 is considered to have a sensitivity of 1.0, T-KFUL8 is considered to
have a sensitivity of 0.75, and KLGB3 is considered to have a sensitivity of 0.55
when detecting the UAVs in the second descent segment (2575 to 2200 feet). This
assumption is done because F-KEMT2 is located closer to the UAVs than the other
two radars in question. Therefore, the veracity of the top left query is 41.25% when
the decision is made based on the above three radars detecting the UAVs, 75% when
the decision is made based on T-KFUL8, 55% when the decision is made based on
F-KLGB3 and T-KFUL8, and 100%when the decision is made based on F-KEMT2.

The query inference results suggest that (from left to right) (1) LUAV has very
high chances of collision (very high risk of collision) and the veracity of this query
is based on a sensitivity of 100% (very high to make a trusted decision) when F-
KEMT2 detects the UAVs. On the other hand, MUAV has no chances of collision
(no risk of collision) and the veracity of this query is based on the same sensitivity
(100%); (2) LUAV has high chances of collision (high risk of collision) and the
veracity of this query is based on a sensitivity of 75% (relatively high to make a
trusted decision) when T-KFUL8 detects the UAVs, and MUAV has some chances
of collision (medium risk of collision); and (3) LUAV has high chances of collision
(low risk of collision) and the veracity of this query is based on a sensitivity of
41.25% (low to make a trusted decision) when the three radars are considered for
the detection of the UAVs, and MUAV has high chances of collision (high risk of
collision). The first suggestion of a LUAV collision is the most veracious out of the
three suggestions.

These scenarios with UAVs in the airspace describe potential events with clutter
airspaces composing commercial aircraft and unmanned aerial vehicles. In both
cases, the ontology support alerts and warnings, along with veracity metrics, to air
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traffic controllers (ATCs). The ATCs could communicate with the aircraft, gather
more information from the airspace, or imitate methods for collision avoidance.

6.6 Concluding Remarks and the Way Forward

An implementation of Ontologies for NextGen Avionics Systems (ONAS) has been
presented. An operation framework and an ontology-based process to support
decision-making in advanced ATM/UTM systems have been proposed along with
examples of implementation. The AAO implementation is a simple but useful proof
of concept forONAS.TheproposedONASapproach includes a cognitiveATM/UTM
architecture for avionics analytics and Situation AWareness (SAW) to maintain safe
distances and alternative route planning for different weather conditions. The SAW
approach proposed is intended to be used in civil aviation with potential use on board
in autonomous UAVs in order to increase autonomy. Results from two scenarios as
application examples have been discussed. The realistic scenarios are simple, but
provide a discussion for which an ATM/UTM system which considers semantics
from updates of weather maps, airport maps, and route maps. The above scenarios
have discussed flight situations where the controllers’ decisions can be made by
means of the support of the ontological approach proposed.

Future research work will involve methods to improve the AAO implementation
and veracity metrics [33]. One of the relevant approaches as an interesting veracity
metric to be considered for further investigation is the big data veracity index [34]. It is
based on three main dimensions to define veracity: objectivity (subjectivity), truthful
(deception), and credibility (implausibility). The index approach deserves attention,
but some research is required to deal with artificial autonomy (DSS) since the poten-
tial tools to support such a metric index are too human-oriented. The challenge is
to develop supporting tools that allow for machine veracity metrics, e.g., radars. On
the other hand, some future refinement on the integration of veracity (uncertainty)
into the AAO will enhance usefulness. One of the inspiring methodologies (to deal
with probabilistic uncertainty when making decision) is the Bayesian networks, e.g.,
BasesOWL [35] which is suitable for ontologies. These enhancements in the ontol-
ogy will support contextual reasoning over data, environment, and decision-making
[36].
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Chapter 7
Advances in Software Engineering
and Aeronautics

Shafagh Jafer, Umut Durak, Hakan Aydemir, Richard Ruff
and Thorsten Pawletta

Abstract Avionics, like any other safety-critical real-time systems, pose unique
challenges on system design, development, and testing. Specifically, the rigorous
certification process mandated for avionics software calls for additional attention.
The DO-178C Software Considerations in Airborne Systems and Equipment Certi-
fication provides detailed guidelines to ensure safety measures. This chapter gives a
different angle to avionics development and certification, highlighting model-based
approaches for advancing the design, development, testing, and maintenance of air-
borne software systems. Modern software engineering processes such as agile and
scrum are discussed as the new techniques in speeding up the certification hurdle,
while achieving higher return on investment.

7.1 Introduction

Complexity of modern aircraft is increasing day by day in order to enhance safety
and boost the economy of flight while number of passengers and flights are increas-
ing drastically. To provide safety and comfort for passengers as well as pilots, the
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number of avionics functions added to avionics architecture increase every year. The
commonly known architecture to implement flight control and other avionics sys-
tems such as navigation, communication or radar was the federated architecture. In
the 70s, all functions were separated. Starting from the 80s some of related functions
became integrated, and eventually in the 90s all functions became integrated.

In federated architecture, each function had its own fault-tolerant computer sys-
tem. The most important advantage of federated architecture was that a fault in
any function would not affect any other function. Managing vendor providers were
relatively easy because requirements could be defined separately for each avionic
equipment. The only common element between functions was the data communi-
cated. Shared resources such as sensor data used by each functionwere kept in limited
numbers as much as possible and resource sharing was provided via deterministic
secured data buses. Of course, this architecture required more hardware which even-
tually means more weight, yielding higher fuel consumption. The increasing amount
of features boosted the complexity, yielding higher development and maintenance
cost, therefore creating a large burden for modern aircraft.

Integrated Modular Avionics (IMA) is proposed as an alternative concept for
avionics architecture and became popular in the 90s [1, 2]. The main idea of IMA
is sharing same hardware for different functions. This concept reduces the cost of
hardware, wiring, and accordingly design and maintenance. An example of IMA
is the Airplane Information Management System (AIMS) which is used in Boeing
777 [3]. The AIMS is the brain of the Boeing 777 and it combines primary flight
display, navigation display, Engine-Indicating and Crew-Alerting System (EICAS)
display, flight planning, navigation, performance management, airplane and engine
monitoring, communications management, digital flight data acquisition, and data
conversion gateway functionalities into a single integrated system.

An important keywordof IMA is partitioning. Partitioning is crucial in IMA to stop
fault propagation from one application to another. It utilizes appropriate hardware
and software mechanisms to provide strong fault containment [4]. Partitioning can
be provided above an operating system layer or above a minimal kernel with most
operating system services which rely on the same hardware. Two dimensions were
introduced inpartitioning: spatial partitioning and temporal partitioning. Spatial leads
to the principle of ensuring that the software in one partition can neither change any
data nor issue a command to any device on another partition. Temporal partitioning
dictates the principle to ensure that the activities in one partition do not disturb the
timing of events in other partitions. An example partitioning architecture is depicted
in Fig. 7.1.

Certification of avionics is a big challenge. Each airborne equipment has its own
criticality levels and should have been appropriately certified. ED-12C/DO-178C
SoftwareConsiderations inAirborneSystems andEquipmentCertification [5],which
is developed by RTCA (Radio Technical Commission for Aeronautics) and EURO-
CAE (a nonprofit organization providing a European forum for resolving technical
problems with electronic equipment for air transport), is the primary reference for
software certification. It describes criticality levels associated with the failure condi-
tions (Table7.1). After a safety assessment and hazard analysis has been conducted
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Fig. 7.1 An example partitioning architecture

Table 7.1 ED-12C/DO-178C
criticality levels

Level Failure condition

A Catastrophic

B Hazardous

C Major

D Minor

E No safety effect

by examining the effects of a failure condition in the system on the aircraft, crew,
and passengers, a criticality level is identified for the software. A Design Assurance
Level (DAL) and a set of certification requirements will then follow.

In IMA architecture, each function in each partition can have its own assurance
level. It allows to assign different DAL for each function. Thus, it is possible to design
a flight control computer that has both a Level A autopilot function and a Level
D maintenance function. Without partitioning, all software certification processes
should be completed according to Level A requirements. Maintenance parts should
be implemented in a separate hardware, which will add cost and time. Partitioning
provides the possibility to implement software with different assurance levels in the
same hardware.

On one hand, IMA architecture separates main framework and applications so
each application can be provided by different subcontractors; on the other hand,
it makes integration more complex. According to Watkins and Walter [6], before
transitioning from federated architectures to IMA, the system integrator needs to be
confident in its ability to perform the integration process, which includes increased
interface definition and management, resource allocation and management, and sys-
tem configuration analysis and generation.

Avionics software development has unique challenges on system design, develop-
ment, and testing. The characteristics of avionics software can be introduced with six
important qualities: Functionality, Reliability, Maintainability, Portability, Usability,
and Efficiency.
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Functionality is one of the main qualities of any product that describes how
well it suits its intended purpose. Functionality is an utmost importance in avionics
software. It shall provide exactly all functionalities as specified in its requirements.

Reliability is the quality of a product which describes how reliable it is. The
reliability required by a complete aircraft system provides a bound on the reliability
required by the avionics and software embedded in it [7]. Avionics software failure
leads to catastrophic results, thus, mandating developers to consider software failures
and provide mitigation mechanism.

Maintainability is a quality which designates the ease of preserving a product
from failure or decline. It corresponds to the ability to identify and fix a fault within
a software component [8].

Portability is being defined as how the software can adapt to changes in its target
hardware environment. Porting an avionic software on a different hardware is a highly
expensive and time-consuming process. There is a recent initiative which targets
increasing portability of avionics softwares, FutureAirborneCapability Environment
(FACE) Consortium [9], by defining a modular, and portable software environment
supporting IMA in avionics systems.

Usability designates the ease of use in a product. The nature of avionics software
is embedded, running on various special hardware to deliver expected functionality.
Pilots, crew, or operators control these functions via user interfaces or hard buttons or
keyboards. Pilots or operators can undergo many situations while onboard, requiring
them to take actions promptly. Usability of avionics software is crucial in order to
reduce human operator error.

Efficiency is concerned with system resources used when providing the required
functionality [8]. As with reliability, the causes of performance inefficiency are often
found in violations of good architectural and coding practices which can be detected
by measuring the static quality attributes of an application [10].

The authors promote model-based approaches and agile development practices as
themajor advancements in recent software engineering landscape. After an introduc-
tion that furnishes an overview about the avionic systems and software, the chapter
will present advances in avionics software development with a special emphasis on
agile development and model-based approaches as its enabler.

7.2 Advances in Avionics Software Engineering

7.2.1 Extreme, Agile, Scrum, and Beyond

Developing safety-critical systems is more challenging than developing non-safety-
critical systems. While safety-critical systems stress on high quality, low costs, and
schedules, they are subject to a rigorous certification processes in order to meet
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required safety standards. The purpose of the certification process is to ensure that
the system to be used in a specific environment under specific conditions is safe.
The Federal Aviation Administration (FAA) is imposing safety requirements on
the development and verification of airborne avionic systems stated in DO-178C
[5]. The latest DO-178C guidance includes modern technologies and methodologies
necessary to achieve a more reliable and safe system within a constrained time
and cost. It also describes various guidelines to engineer (design, specify, develop,
test, and deploy) a software component and all associated equipment with a certain
level of safety that complies with the FAA airworthiness requirements. Although
these standards define the requirements for a process to remain compliant when
used to develop a safety-critical system, the standards do not specify which process
to use. Thus, software developers can use any preferred processes if it meets the
objectives and safety standards of DO-178C, providing the option to use Agile,
Formal Methods (supported by DO-333 Formal Methods Supplement [11]), and
Model-Driven Development (detailed in DO-331 supplement [12]) with all their
associated advantages in the certification and development process.

Most common Agile methodologies are scrum [13], XP (eXtreme Programming)
[14], Crystal [15], FDD (Feature-Driven Development) [16], TDD (Test Driven
Development) [17], andASD (Adaptive SoftwareDevelopment) [18]. Thesemethod-
ologies share the same philosophy and promote the values of agile manifesto; but
from the implementation perspective, each has its own terminology, practices and
tactics.

While Agile is significantly accepted in industry, it is not as widely practiced
in safety-critical systems development because of its undisciplined nature when it
comes to documentation and lack of rigorous verification and validation techniques.
Additionally, using the agile process as a standalone method to develop a safety-
critical system has been quite challenging due to the quality controlmechanisms used
by agile such as informal reviews and pair-programming, which have not assured
developers or authorities that the product is safe [19]. On the other hand, formal
Methods [20] are not preferred in a conventional software development process, but
instead are used partially in the verification process of safety-critical systems. Many
claim that using formal methods can increase project budget and the time to market
because of the extraworkload added in the design and analysis phases of the Software
Development Life Cycle (SDLC) [21]. Traditionally, simulation and rigorous testing
methods are used to verify and validate system specification. However, applying
these techniques allow for partial verification of system behavior instead of proving
the correctness of the entire system [22, 23]. A distinct advantage of formal Methods
is providing precise and unambiguous descriptions and mechanisms that facilitate
the development of safety-critical systems in a more robust fashion.

The growing complexity of software systems is the motivation behind the current
introduction and acceptance of model-based approaches [24, 25] and tools in the
avionics industry, as it has proven to reduce the gap between the abstract level of
system requirements and software implementation. Through the use of supporting
tools and technologies such as automatic code generation, formal specification, sim-
ulation and verification tools, model-based approaches have improved the efficiency
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of complex system development and provided the same level of quality as traditional
processes in a shorter time and lower cost. Model-based approaches use models
that define a system at multiple levels of abstraction and from a variety of perspec-
tives through transforming and analyzing models. Therefore, incorporating an agile
process with formal methods and model-based approaches might result in a more
promising solution that will solve the current safety-critical software development
issues related to project budget and completion time.

Furthermore, there has been a systematic and multidisciplinary study to find out
the effectiveness of model-based approaches in broad terms. For example, there is
currently amassive focus on the integration ofmodel-based approaches and agile pro-
cesses in safety-critical software development. For example, a new software devel-
opment process has been proposed in [26] that merges advantages of both agile
and model-based development practices to establish a Model-Based Agile (MBA)
process that capable to satisfy the DO-178 software development objectives. MBA
process significantly relies on the use ofUnifiedModeling Language (UML) that pre-
serves the iterative and incremental nature of gile technique in order to capture, refine
and verify systems requirements. IBM tools such as Rhapsody [27] and DOORS [28]
are example tools formanaging requirements; where they have demonstrated compli-
ance with DO-178C requirements. This allows developers to maintain traceability of
top-level system properties and requirements to the specification model, as dictated
by the standards.

7.2.2 Designing with Models

Model-Based Design (MBD) [29] is a methodology that accelerates the development
time and reduces the overall cost of designing complex avionics. At the core ofMBD
is a model that defines the system and is used throughout the development process.
This model includes not only the algorithms that will form the implementation, such
as an autopilot, but also environmental and physical aspects of the system that impact
the design. These models might involve many different domains, including mechan-
ical, electrical, and hydraulic systems. For avionics, the physical and environmental
models can be derived from empirical data, from testing, such as wind tunnel data,
wind tunnel data to define the aerodynamic characteristics, or first-principle equa-
tions of motion that define the motion of the vehicle. MBD enables the modeling and
simulation of systems that span these disparate domains in a single environment. This
common frameworkmeans engineers can collaborate, providing valuable insight into
the interaction between components. MBD provides a common language to share
information between departments, as well as between manufacturers and suppliers.
With MBD, engineers can perform both component-level and system-level simula-
tions and testing at all stages in the development process. This lets teams detect errors
earlier in the design process when they are much less costly to fix. In addition, the
ability to simulate the system means engineers can find incompatibilities between
components earlier, reducing the cost of integration. The continuous verification and
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validation aspect of MBD makes it especially valuable, accelerating the design time
and reducing errors. A traditional development workflow can be broken down into
five steps:

1. Requirements specification
2. Design
3. Implementation
4. Integration
5. Test and verification

With MBD, these same components exist; however, they are not performed sequen-
tially, but iteratively throughout the development process. Figure7.2 illustrates a
typical workflow for MBD. Starting with a set of requirements (and possibly some
research information), the team develops a model of the system. As the design pro-
gresses, simulation verifies that the designmeets the requirements and that the system
performs as desired. At this stage in MBD, areas where the requirements are incom-
plete or possibly conflicting can be identified. This enables requirement engineers to
go back and update the requirements as needed. In a traditional development work-
flow, these inconsistencies are found much later in the development process, when
it costs significantly more to fix them. As the design matures, the team can imple-
ment their design using automatic code generation. Engineers can test and verify the
resulting code using the same test cases used to test and verify the model. Once the
implementation has been tested and verified, it can be integrated with other design
components and hardware. The integrated system can then be tested and verified.
The process of designing and testing, implementing and testing, and integrating and
testing can be repeated as the systemmatures throughout the development workflow.
With MBD, the test and verification phase occurs with each of the preceding phases:
design, implementation, and integration, and not at the end of the development pro-
cess, as with a traditional development workflow. Continuous test and verification
is the key aspect of MBD that enables teams to find and correct errors much earlier
in the development process, reducing both the cost of development and the time to
market.

Embedded processors have become ubiquitous in everyday life, from smartphones
to washing machines, from environmental controls in automobiles to entertainment
systems on commercial aircraft. In avionics, the computing power these new embed-
ded processors provide has led to many advances, including new and improved sen-
sors and actuators, cockpit visualization, and fly-by-wire systems that work across a
network to share data. These enhancements have in turn increased the complexity of
these systems dramatically. While complexity has increased, it does not change the
level of testing required to meet a standard such as DO-178C [5], however it does
increase the amount of testing needed to ensure the safety of avionics systems, and
subsequently, the number of artifacts needed to confirm compliance. Using MBD
enables teams to automate many of these tasks, reducing the manual effort a tradi-
tional development process requires. UsingMBD, engineers can link system require-
ments to the model and to the resulting automatically generated code. Automated
code reports provide the required traceability between the code and the requirements
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Fig. 7.2 Workflow for MBD

document. In MBD, test cases can be created and used throughout the development
process and test results reports are automatically produced. As with the model and
the resulting automatically generated code, the test cases can be linked to the require-
ments. Teams can use verification and validation tools to provide MCDC coverage
of the model and the resulting automatically generated code to demonstrate full test-
ing. These tools also verify that the code is equivalent to the model to eliminate
the need for code reviews, and check the code for potential run-time errors. These
automations can also be used on future projects, reducing development costs even
further. Combined with the continuous testing and verification, it is this automa-
tion that makes MBD so valuable for avionics system development. To ensure the
successful use of MBD for avionics software development, it is imperative that the
development process be defined with MBD in mind. This means determining which
tools for MBD the team will use, the automations they will employ, and the artifacts
that will be required to show compliance with the software standard. MBD has been
used successfully for many avionics applications, improving the final products while
reducing the development cost. Airbus used MBD to develop a fuel management
system for the A380 and for the air conditioning software for the EC130 helicopter.
Lockheed Martin employed MBD for the Joint Strike Fighter control law devel-
opment. BAE uses MBD across diverse disciplines from developing flight control
computers for a business jet to an autopilot for a UAV, as well as a software-defined
radio application and a mobile antenna pointing system. Bell Helicopter developed
the world’s first fly-by-wire helicopter, the Bell 525 Relentless, using MBD.MBD is
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becoming increasingly prevalent in avionics software development. With its advan-
tages in reducing development cost, it is often being specified as the method to use
for new projects. Suppliers and subcontractors are being directed to use MBD and to
provide component models that can be used in the system integrators system model.
The DO-178 standard was recently updated to DO-178C, along with addendum DO-
331, which specifically addresses the use of MBD for safety-critical software in
avionics. However, many current avionics systems are upgrades or modifications of
existing systems, developed using more traditional approaches. Switching to MBD
can be deemed to be too expensive or too risky due to the necessary changes in
process and the learning curve. Nonetheless, there are ways to leverage MBD for
existing systems. The recommended method is to use MBD to develop a single com-
ponent of a system. The team can then apply the lessons learned and automations
from this component to other components. This phased approach lets an organization
adopt MBD gradually and avoid the challenges of switching completely from a tra-
ditional approach to MBD. Another reason sometimes cited for not adopting MBD
is concern over the quality, efficiency, and readability of automatically generated
code. Over the past 20 or more years, many advancements in automatic code gener-
ation have addressed these initial concerns about automatically generated code. For
teams adopting MBD for avionics software development, the benefits of using MBD
quickly eclipse the challenges of using a new development workflow. Current tools
for MBD continue to evolve, making MBD easier to adopt, and further improving
its high return on investment.

7.2.3 Developing with Models

Amain concern when constructing complex safety-critical systems is the production
of proof, which can be used to validate systems to an acceptable level of confi-
dence. Such acceptance level is achieved when errors in requirements, design, and
implementation of a system have been identified and fixed, and any possible effects
of remaining errors are automatically mitigated by the system architecture. Model-
Driven Development (MDD) generalizes and extends the MBD by proposing the
formal modeling of all the system properties to support overall system development
processes, which includes generation of requirements, specification, and design at
different system levels, as well as the validation and verification of systems that con-
tain associated subsystems and components [30]. In this sense, it covers the MBD.
MDD shifts the immediate focus from generation of data and proof documents to
the generation of project work products (e.g. design models, development schedules,
analysis models, etc.). Such approach improves software development practice by
promoting [31]:
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• Increasedproductivity and reduced cost: Producing artifacts and code frommodels,
which increases developer productivity as well as overall development cost.

• Documentation: with MDD, documents are generated frommodels, ensuring con-
sistency and information availability within the models on a daily basis, rather
than in documents that are difficult to navigate. Tools such as IBMRational SoDA
and IBM Rational Software Architect Report Generator automatically generate
documentation.

• Maintainability: MDD offers a maintainable architecture where changes are made
rapidly and consistently, enabling effective integration of components onto new
technologies.

• Consistency: Automatically generated artifacts straight frommodels, ensures effi-
ciency and consistency.

• Delayed technology decisions: early MDD phases focus on modeling activities,
which help in postponing the implementation details (e.g. choice of certain tech-
nology platform or product version) until a later time, where additional details
become available. In domains with lengthy development cycles, such as aviation,
this is crucial as target platforms may not even exist when initiating the develop-
ment activities.

• Automation: is the main feature that distinguishes MDD from other approaches.
Automation ensures that software components are consistently implemented,
which leads to an improved product quality with shorter project costs and shorter
delivery time.

• Additional benefits of usingMDD include the use of common design artifacts, for-
mal proofs, facilitating traceability, improving communication and insight among
project participants, as well as easier maintenance [24].

7.2.4 Managing Variability

With the advent of mass customization ideas, systems are now coming with a diver-
gent set of end user requirements, which lead to vast amount of variants. The ability
of a system or an artifact to be configured, customized, or extended for employment
in a particular context is defined as variability [32].

Twomain approaches for modeling variability are named as positive and negative.
Positive variability involves starting from a minimal core and selectively adding
additional parts based on the configuration, whereas in negative variability parts are
taken away selectively from a maximum overall model [33].

Variability mechanisms can be defined at various levels of abstraction, ranging
from metamodels to implementation of the source code. Referring to the layers of
the Meta-Object-Facility (MOF) hierarchy [34], they can appear on the M2, M1, or
the M0 layers. Variability modeling can be achieved in M2 layer using metamodels
combinedwith automatedmodel transformations to executable systemmodels inM1
layer. Metamodeling is often conducted using general- purpose modeling languages
such as UML [35] or feature models [36]; specific software tools for requirement or
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variant management such as pure variants [37]; or domain-oriented approaches and
tools such as in [38].

In the engineering domain, the executable system models in M1 are often design
models that are developed using MBD environments such as MATLAB/Simulink.
Since the necessary model transformations or tool integrations are a particular chal-
lenge, in engineering applications variability is often encoded in the M1 layer within
the executable system models. Examples of such approaches particularly for the
MATLAB/Simulink environment can be found in [39–41].

Among others, Software Product Lines (SPL) can be presented as the widely
employed approach for developing systems that are characterized by a high degree
of variability [42]. The Carnegie Mellon Software Engineering Institute defines SPL
as a set of software-intensive systemswith a common andmanaged set of features for
a mission [43]. They provide variation points where different variants of the products
can be derived for varying features based on varying requirements.

Variabilitymanagement is regarded as a key development practice in ever growing
cyber-physical system domain. Examples from automotive domain would include
[41, 44, 45]. Sozen and Merlo state that regarding the size and complexity of model
avionics software, adapting variability management and SPL approaches improves
the development process, reduce the cost, and improve the time to market [46].
Some of the publications that report experiences from avionics software development
include Dordowsky et al. who utilized a SPL approach for the development of NH90
helicopter avionics system [47, 48], and Braga et al. who used feature modeling and
SPL for the development of software for unmanned air vehicles [49].

7.2.5 Testing with Models

Modeling which involves developing mathematical models of physical systems and
formal models of computation is an essential component of design in aeronautical
systems [50].Models are not only utilized to simulate the systems for analysis and the
evaluation of design decisions, but also, as mentioned in design with models section,
by means of automated and semi-automated methods implementation is synthesized
from the models.

The heterogeneity and complexity of system components and the networking
between them correspond to a complexity and modularity in system models. On
these grounds, an adequate test coverage is only possible with a large number of
test cases. Therefore, adaptability, flexibility, and automation are desirable quality
attributes of the testing infrastructures.

Model-Based Testing (MBT) proposes automating test case generation from a test
specification, also called a test model, instead of implementing test cases manually
[51]. It further enhances the flexibility and adaptability of the testing infrastructure
by automating the test case design [52].

Roßner et al. [53], introduceMBT as a process which is aligned with model-based
development (Fig. 7.3). In MDD, a formal system model is first derived based on the



98 S. Jafer et al.

Fig. 7.3 Model-based testing

system requirements. It represents a simplification of the structural and behavioral
relationships of real system components. In the next step, executable model compo-
nents can be generated from the formal system model. MBT uses the same system
requirements to derive a test model that is able to generate one single test case or a
test suite for a System Under Test (SUT). Test cases are abstracted in a test model
that describes the intended behavior of the SUT, which needs to be tested. Then an
MBT tool generates a set of executable test cases from that test model [52].

One of the initial ideas about employing MBT with MBD was introduced by
Zander [54]. Her Model-in-the-Loop for an Embedded System Test (MiLEST)
provides well-structured libraries for test data generation, test control, and test
evaluation for MATLAB/Simulink. Almost at the same time, MathWorks started
providing Simulink Verification and Validation [55] for the realization of MBT in
MATLAB/Simulink. As in MiLEST, Simulink Verification, and Validation also pro-
vided library blocks that target test functions.

The application of MBT in aeronautics domain has long been investigated. The
Test and Automation Framework (TAF) approach of Lockheed Martin which pro-
vides model-based test vector generation and test automation features was one of the
early examples [56, 57]. In another study, Stallbaum and Rzepka propose a UML
profile to support MBT in the avionics domain [58]. A recent study proposes a MBT
process, Fail-SafeMBT, for the development of aeronautical software [59]. It aims at
semi-automatically derive means for compliance. Different from the avionics appli-
cations, Durak et al. proposes a MBT approach for objective fidelity assessment in
flight simulators [60].
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7.2.6 Software Evolution and Modernization

The laws of software evolution state that software systems, which are actively used
and embedded in a real-world domain are subject to an inevitable change and evolu-
tion [61]. Evolution causes aging and erosion in software systems, which appear as
sourceless executables, dead data, dead code, inconsistencies, and missing capaci-
ties [62]. Software eventually degrade in performance, become buggy and lose their
customers and market [63].

Overall replacement of existing systems is risky and not always economical.
Therefore, reengineering is introduced to tackle software aging and erosion. It focuses
on preserving the knowledge embedded in the legacy system by proposing an evo-
lutionary maintenance of the legacy systems in order to reduce risk and cost [64].
Efforts to define a standard reengineering process for software systems have led to
an Object Management Group (OMG) standard, Architecture-DrivenModernization
(ADM), which specifies approach for the modernization of existing systems with a
broad focus on all aspects of the current system and a promise of transformation to
target architectures [65].

ADM advocates a model-based approach to software modernization. Knowledge
Discovery Metamodel (KDM) is utilized to extract the knowledge from software
assets [66]. Model transformations are then recommended as a means of moderniza-
tion for legacy assets.

Modernization of software assets has also been a topic in aerospace. In 2001,
Norton and Decyk presented a code modernization approach for legacy mission
scientific software [67]. Sarkarati et al. introduce an ADM approach for legacy space
data systems in 2008. Similarly, Durak in his 2015 paper [68] utilized an extension
to KDM for ADM of legacy flight simulation assets.

7.3 Conclusion

Model-based approaches are emerging as economical techniques and enablers of
agile practices in developing safety-critical systemswhere tremendous attentionmust
be paid to satisfy certification requirements. They not only aim at the requirements
and design phase, but also provide numerous automation and traceability measures
throughout the entire software development life cycles. This plays a key role in
addressing certification needs while saving big on resource and efforts allocation.
This chapter takes a model-based approach in exploring certification and safety
requirements for designing, developing, testing, and modernizing airborne software
systems. Challenges in each phase are discussed and model-based approaches for
tackling them are highlighted.
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Chapter 8
Towards Autonomy and Safety
for Unmanned Aircraft Systems

Christoph Torens, Johann C. Dauer and Florian Adolf

Abstract This chapter describes unmanned aircraft with respect to autonomy and
safety aspects of aerospace. The focuswill be on unmanned aircraft systems, however
most of the principles regarding safety and automation are valid for both, manned
and unmanned aviation. As a means to assure safety for aircraft, safety assessments,
development processes, and software standards have been established for manned
aviation. In this context, design-time assurance of softwarewill be discussed.Another
key component of the safety concept for manned aviation is the onboard pilot. The
pilot supervises and validates the system behavior and develops a gut feeling if the
system is okay, due to his onboard presence. This is not possible for an unmanned
aircraft. Human supervision will be remotely located. Therefore, an extensive dis-
cussion on runtime assurance and automated supervision will be a part of this work.
Furthermore, with the growing degrees of automation and upcoming autonomy of
the aircraft, one pilot might have to supervise more than one aircraft at the same time.
Unmanned aircraft are expected to be integrated into civil airspace in the near future,
possibly in very large quantities. The autonomy of these unmanned aircraft and the
absence of a pilot onboard the aircraft is a source of concern. However, the automa-
tion and autonomy can also support safety. The interdependence between safety and
autonomy will be discussed in this chapter. The challenge regarding unmanned air-
craft is that the same level of safety can be maintained. In this context, this chapter
will discuss the impact of new and upcoming regulations and standards for unmanned
aircraft regarding a holistic approach to the assessment of risk and their impact on
autonomy and safety.
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8.1 Introduction

With all the advances in flight that have been presented, one particular technology
that must be discussed is the introduction of unmanned aircraft systems (UAS).
Technology also advances significantly inmanned aviation, however in the unmanned
aircraft, the absence of a pilot onboard is a disrupting change and a challenge at
the same time. Unmanned aircraft becomes possible only as a result of previous
technological advances that can be built upon. In particular, reliable data links and
powerful/miniaturized onboard computing are a key prerequisite for UAS.

The concept of unmanned aircraft impacts airspace as a whole, in aspects of
underlying technology, operational use cases, airspace integration, and certification.
Although with existing technology a high degree of automation can already be real-
ized, there is a concern that the same level of safety will not be realized for UAS,
as there is no pilot on board the aircraft. Today, one of the main responsibilities of a
pilot is the continuous supervision and validation of the system behavior according
to the expectations and knowledge of the pilot. Pilots may even develop a gut feeling
if the aircraft is working properly, due to their onboard presence. This is not possible
for an unmanned aircraft. There might be a pilot present for each UAS at a ground
control station. However, his situational awareness is significantly reduced by his
remote location from the aircraft alone. In more advanced scenarios, there might not
even be a continuous human supervision. Or one pilot might have to supervise a
whole fleet of unmanned aircraft.

This is a technological challenge, a lot of additional functionality has to be devel-
oped to enable remote operation or even autonomy. Additionally, this is a challenge,
especially from a certification perspective. Today’s certification concepts rely on the
pilot as a safety barrier. In fact, this human element is often considered to have a
failure rate of zero. With UAS, this central element of existing safety concepts is
eliminated. However, the level of safety must not be reduced by the introduction
of unmanned aircraft. As a result, the verification, validation, and certification of
safety-critical systems of the UAS is a key element.

In this chapter, we chose the term autonomy being aware that it has been discussed
controversially within the unmanned aircraft community. There is a tendency that
capabilities under research and not yet fully understood at the time are often referred
to as autonomous capabilities. While research on these subjects matures it is often
replaced by automation as the capability is technically achieved by some form of
automation. There are also approaches to standardize the concept of autonomy. The
term started in the context of early flight control systems merely stabilizing the air-
craft during flight. Afterward, autonomous referred to components in the context of
decision-making for automation of missions. Currently, it is concerned with supervi-
sion and monitoring of the system itself, constantly evaluating the system’s state of
safety. We believe, the number of functions of unmanned aircraft will increase dras-
tically in the near future enabling increased levels of automation. Judging from the
past years, this development will occur in ways often not compatible to how safety
is assured in the context of manned aviation. As accepting a lower level of safety is
not an option, new methods to assess and ensure safety will have to be explored.
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8.2 Challenges for Unmanned Aircraft Systems

For the integration of unmanned aircraft into segregated or non-segregated airspace
and a broad use of UAS, the regulation for this new category of aircraft as well as the
aircraft airworthiness is a great challenge. There is currently nofinished regulation for
certification and accreditation for the use of civil unmanned aircraft. The airspace
is a safety-critical domain; therefore, safety is the major issue for integration of
unmanned aircraft into the airspace, specifically safety targets for UAS are unclear.
From this perspective, the following problems arise:

• How shouldUAS be regulated, and how can regulation copewith the heterogeneity
of UAS?

• How can the same level of safety, trust, and situational awareness be achieved
without a pilot being on board the aircraft and autonomous functions being in
control?

• To which safety level do unmanned aircraft have to be designed and to which rules
and standards do unmanned aircraft have to comply?

8.2.1 Challenge: Regulatory Framework for Heterogeneous
UAS

One of the main barriers to the rapid growth of commercial unmanned aircraft is the
missing regulation and integration into the airspace. The missing regulation is the
result of a major concern for safety of people in the air and on the ground. The first
attempt to establish a regulation for unmanned aircraft was started in 2005 by ICAO.
In 2011 ICAO published Circular 328 [1], a document in which ICAO underlined
that UAS should demonstrate equivalent levels of safety as manned aircraft and thus
meet the same government rules for flight and flight equipment. By applying the same
rules of manned aircraft for unmanned systems, the complex hardware and software
systems that provide control of the unmanned aircraft need to address compliance
with established standards such as DO-178C and DO-254 for software and hardware
development.

As the term unmanned aircraft systems refer to tiny multicopters, in the same
way it refers to aircraft of several tons operating above the current traffic, unmanned
aircraft systems and underlying technologies are very heterogeneous. This makes it
difficult for regulatory authorities to make rules about unmanned aircraft in general.
Additionally, manufacturers and consortium have problems defining adequate stan-
dards and operational procedures. It is not reasonable to assume the same regulation
for the multitude of unmanned aircraft, or to demand the same amount of rigor for
a failsafe system across all UAS. Instead, rules should be different for manned air-
craft and scalable toward the specific properties of a UAS. As a result, airworthiness
standards for UAS are still in development. Some updates are briefly presented in
Sect. 8.5.
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Compared to manned aviation UAS offer new possibilities in use cases and mis-
sion designs. Enabling these new use cases is another challenge regarding regula-
tions, standards, and public acceptance. From the perspective of safety assurance,
the diversity poses a great challenge that is partly answered by a new classification
recently published by the EASA (European Aviation Safety Agency) [2–4]. Three
categories are proposed, labeled open, specific, and certified. UAS under the open
category involves hardly any risks and there is no certification necessary. The certi-
fied category handles all UAS imposing equivalent risks as in manned aviation and
requires more traditional means of certification. This class of unmanned aircraft is
risk-wise located between the open and certified and contains a great diversity. A
scaling of effort to ensure safety based on the actually involved risks in operation is
introduced. A safety assessment method called specific operation risk assessment is
used to determine the measures necessary to achieve an equivalent level of safety as
in manned aviation. This concept will be further discussed in Sect. 8.4.

8.2.2 Challenge: Assurance of Autonomy

Autonomous UAS clearly differs from manned aircraft. There is no onboard pilot to
take control in case of an emergency.Theonboardpilot is replacedby the software that
has to take over functionswhich the pilotwould usually perform, resulting in software
systems of increasing complexity. Specification and modeling of autonomy itself is
difficult, there exist various frameworks for describing and modeling autonomy on
different levels. Particularly interesting for autonomous UAS is the autonomy levels
for the unmanned systems framework from NIST [5, 6] and an adaptation of this
framework for UAS [7, 8]. Furthermore, the software needs to be very reliable, since
the pilot cannot simply take over control. In particular, the assurance of autonomy
is a topic of research. Some aspects regarding safety and risk for unmanned aircraft
have been previously researched by the authors, additional information regarding
failsafe systems can be found in [9, 10].

In today’s aircraft, there are already a lot of supporting systems for the pilot,
increasing the overall level of automation. However, the pilot is the main fallback
layer in case of a system failure or any unforeseen event. The pilot can assess when
a system behaves unexpectedly or in contradiction to the overall situation and then
deactivate systems, switch to backup systems, or possibly do a manual control. How-
ever, this approach of a pilot on board as a fallback layer cannot be applied to the
unmanned aircraft. The onboard systems must always retain a certain level of reli-
ability and safety. And all of this critical information has to be transmitted to a
ground control station. The remote pilot, who monitors one or more aircraft from the
ground, is dependent on these support systems because of the spatial separation from
the aircraft. Furthermore, additional functionality, supporting even higher levels of
automation are required for the indirect control andmonitoring of unmanned aircraft.

For achieving safe systems, in general, according to Leveson, there are four
types of design techniques: hazard elimination, hazard reduction, hazard control, and
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damage minimization [11]. This technique should be used in the listed precedence
order for a specific hazard. In the context of autonomous software systems, hazard
elimination would mean to remove a software fault from the program by software
verification. For this, traditional methods can be used like compliance to rigorous
software development standards [12], particularly extensive software testing, but also
formal methods [13] to find and eliminate the error, cf. Sect. 8.2.3. These techniques
are briefly considered in Sect. 8.3, a lot of the literature can be found on this topic,
however, huge efforts have to be invested tomake the software safe. Hazard reduction
could be implemented by a holistic risk assessment and reduction of the risk toward
the environment, this concept of hazard reduction is used by the aforementioned
specific category that will be discussed in more detail in Sect. 8.4. Hazard control
can be considered a threat barrier in the context of the specific category concept, and
will also be discussed in more detail in Sect. 8.4. Damage minimization would map
to a harm barrier of the specific category concept and will be discussed in Sect. 8.3.2
as well as in Sect. 8.4.

8.2.3 Challenge: Software Verification and Certification

Due to the safety-critical nature of the domain, the well-established standard DO-
178C [12] dictates development and verification activities. A key characteristic for
development of aircraft functions is the target level of safety. For a manned aircraft,
e.g., CS25, this is strictly defined, and since people are on board, a catastrophic
failure has to be extremely improbable, which relates to a failure rate of 10−9. It is
yet unclear how safety levels should be interpreted for UAS, however the resulting
design assurance level (DAL) significantly determines thenecessary efforts to comply
to standards.

For the most critical DAL, more than half of the overall prescribed activities are
related to verification and validation. These standards, definitions, procedures, and
risk assessments, however, have been developed for manned aircraft and it is unclear
if and how existing regulation can be applied to unmanned aircraft. With undeniable
similarities between manned and unmanned aircraft, there are also a number of
significant differences. Most obviously, the pilot (if there is any) remains unharmed
in case of a crash or failure of the unmanned aircraft. Additionally, the heterogeneous
multitude of classes and sizes of unmanned aircraft open up the question of a scaled
approach toward the assessment of risk.

ASTM Standard for Small UAS

Due to the high requirements for software development in aerospace, there are efforts
to develop alternative standards as a means of compliance for certification purposes.
ASTM developed a standard “Standard Practice for Ensuring Dependability of Soft-
ware Used in Unmanned Aircraft Systems (UAS)” [14], published in 2016. The
standard is intended for small UAS (25kg) operations, where it is assumed that the
risk will vary based on the concept of operations and the environment. However, it
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was mentioned that a use for other UAS operations in coordination with certification
authorities should be possible. The scope of the standard includes safety and security
aspects of software regardingUASoperation. It should be noted, that the standard can
be used standalone or in combinationwith DO-178C. It does not replace or supersede
other standards. The standard describes safety and security requirements on a very
high level. The standard makes use of three requirement tiers that correspond to the
design assurance levels/software levels that are known from DO-178B/C.

A direct comparison of these documents is difficult, since the level of abstraction
of the ASTM standards is much higher than the descriptions of DO-178C. However,
the ASTM standard for dependability of software is more extensive, since it addition-
ally covers aspects of emergency response plans, software security, and competency
and training of people involved. As an additional guidance, a table in the annex of
the standard references various documents for each of for the required artifacts, e.g.,
the medical standard IEC 62304 as a guidance for developing the organizational
software plan. The amount of documents referenced by this standard results from a
comprehensive comparison of software standards from multiple domains. However,
using all of the referenced documents for a particular project does not seem prac-
tical. A brief comparison between DO-178C and the ASTM standards for software
dependability in Table 8.1. Specifically for small UAS however, the standard can act
as a good reference for verification and certification activities.

ASTM Standard To Safely Bound Flight Behavior of UAS

In 2017, ASTM published a “Standard Practice for Methods to Safely Bound Flight
Behavior of Unmanned Aircraft Systems Containing Complex Functions” [15]. This
standard addresses runtime assurance to supervise specific functionality. It is not
intended as a general guidance to develop safe software, but is specifically focused
on enabling the use of uncertified software for safety- critical functions of the air-
craft. The standard describes a reference architecture to integrate the so-called non-
pedigreed software components into the system. The architecture utilizes a safety
monitor that supervises relevant inputs, e.g., environmental data/sensor inputs, flight
state, GPS. In normal operation, a non-pedigreed complex function is in control. In
case a specified limit is violated or a defined event occurs, the architecture switches
control from the complex function to a recovery control function. This recovery
control function takes control and ensures that the UAS remains within predefined
limits.

Table 8.1 Comparison of software assurance levels across standards

Failure condition category RTCA DO-178C ASTM software dependability

Catastrophic Level A Tier 3

Hazardous Level B Tier 3

Major Level C Tier 2

Minor Level D Tier 1

None Level E –
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This standardmayplay an important role to introducemodel concepts andmethod-
ologies for the automation and autonomy of UAS. Runtime monitoring is an active
research area and the with this document a reference architecture to implement run-
time monitoring is presented that can be used as a basis for discussion with certifi-
cation authorities. Additional details on the use of runtime monitoring, specifically
toward the assurance of autonomy is presented in Sect. 8.3.2.

8.3 Design-Time and Runtime Verification

Verification methodologies can be categorized as design-time verification and
runtime verification. Design-time verification would map to the aforementioned
technique of hazard elimination in the context of safety. Traditional testing method-
ologies, such as static tests, unit testing, software-in-the-loop testing, fall into this
category. For autonomous systems, the state space of possible executions is often
considered too large to be handled by traditional testing alone. As a result, in recent
years, there is a growing interest regarding the use of formal methods for verification
of complex systems.With DO-178C [12], the software standard directly supports the
use of formal methods with a designated supplement DO-333 [13]. Formal methods
can be used in various ways to support verification activities. There is a growing
number of research regarding formal methods. Although there are several forms of
formal methods, one particular kind will be discussed that is of particular interest
regarding the assurance of autonomy, runtime monitoring.

Monitoring is the concept of supervising specific values andproperties of a system.
Runtimemonitoring does this in parallel to the running system, in this case an aircraft
in flight. For specific purposes, this is already done in several layers throughout the
aircraft system as well as aircraft operations. For example, some low-level tasks exist
with automated forms of monitoring, but a lot of monitoring tasks are manual. In
particular, the final as well as high-level task of supervision of the flight itself is still
performed by a pilot.

8.3.1 Using Runtime Monitoring for System Analysis

Runtime verification has the potential to play a major role in the development, test-
ing, and operational control of unmanned aircraft. During development, debugging
is a key activity. It should be noted, that runtime monitoring can also be utilized
in the context of design-time verification in the sense that it can help to analyze
and debark the system at design time. In particular, during development, log files
are inspected manually to find unexpected system behaviors. However, the manual
analysis quickly becomes infeasible if multiple interacting subsystems need to be
considered or if complex computations have to be carried out to correlate the data.
Runtime verification can automate this task and thus make debugging dramatically
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more efficient. During testing, runtime verification can be used to monitor the func-
tional correctness of the system behavior. Runtime verification can be integrated into
software- and hardware-in-the-loop simulations as well as into full-scale flight tests.
In contrast to simple unit testing, a property that is formalized into a runtime monitor
can thus not only be tested in a test fixture, but reused in all test phases.

8.3.2 Using Runtime Monitoring for Assurance of Behavior

Runtimemonitoring can be used to supervise specific aircraft functions, as described
in Sect. 8.2.3. This is particularly useful to assure and constraint the behavior of
autonomous functions. The monitoring acts as an independent layer of verification
for any activity of the autonomous system. To achieve this, it is necessary to formalize
constraints and limitations of the autonomous function.

During operation, runtime verification can further be used to monitor the system
and the validity of environment assumptions. The reason that system failures happen
during a flight is often not because of implementation errors, but because unforeseen
events occur and the requirement assumptions are no longer valid. Integrating runtime
monitoring into operational control makes it possible to enforce safety limitations,
such as constraints on the altitude, speed, geographic location, and other operational
aspects that increase the risk emerging from the unmanned aircraft. If all else fails, the
runtime monitor can also initiate contingency procedures and failsafes, see Fig. 8.1.

Fig. 8.1 Monitoring approach for safety assurance of UAS
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8.4 Holistic Safety Approach

Unmanned aircraft systems vary in size from smallmulticopters to large-scale aircraft
of several tons and so does the financial background between their business cases.
The methodology of ensuring safety that manned aviation has worked with evolved
over the past decades but is not applicable to many of these business cases due to
the extensive costs of certification. Furthermore, the risks involved in operation of
small-scale drones do not justify the effort of such a certification. Therefore, the
need arose to ensure safety to the same degree of manned aviation but considering
the actual risks involved in the operation.

8.4.1 Specific Operation Category

The specific category was designed to cover this class of unmanned aircraft. A pro-
cess considering the specific operation of a certain UAS to assess the risks and
determine the necessary safety measures and certification steps was developed [16].
This so-called specific operation risk assessment (SORA) considers the unmanned
aircraft system itself and its mission, but also education and training of the personnel
involved, the environment consisting of airspace and overflown ground area, and the
background of the operator possessing the aircraft, see Fig. 8.2. From the perspec-
tive of the SORA, all these aspects and their interaction are open to discussion for
each single application, which is the main reason the SORA process is considered a
holistic approach by its authors.

Fig. 8.2 Overview of the SORA process
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Fig. 8.3 Scaled approach toward risk using SAIL levels

All this information is compiled in one document called the concept of operation
(ConOps).1 This document represents the starting point for the SORAprocess, which
assesses the intrinsic risks based on the aircraft and where it is operated. The amount
of risk involved is reflected in a single metric, called the Safety Assurance and
Integrity Level (SAIL), see Fig. 8.3. From this level, the required safety barriers2

should be followed to achieve and guarantee safety.
In other words, the SORA provides a formalism to scale the effort to achieve

safety depending on the actual risks involved in the operation and it does so for
each individual application. However, two aspects are yet to be considered. First,
while manned aviation looks back on many decades of experience on handling risks
to ensure safety and evolved over that time period, the SORA process is created
artificially and has been applied only in few cases. Specifically, the balancing of
the different safety barriers and the operation involved risks will have a significant
impact on safety and effort. If the SORA over- or underestimates the risks, either the
certified system is insufficiently safe or the steps to prove safety is more extensive
than necessary.

Second, the process of SORA is used on each application individually. As the
realizations ofUASvary, so do their application and hence the results of and pitfalls in
applying the SORA process. The SORA simplifies handling applications of reduced

1The term holistic is used in this context to express a contrast to manned aviation, where the aspects
of the ConOps as defined by SORA are handled separately.
2In fact, the SORA differs between the so-called harm and thread barriers. While the first modifies
the intrinsic risks by supporting safety even if an unmanned aircraft goes out of control, the second
reduces the likelihood that it goes out of control in the first place. For simplicity reasons, we stick
to the combination of both and call them safety barriers here.
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risks. However, many open questions remain to handle systems of medium or higher
risks that can stretch close to being equivalent to the certified category.

The process will mature with each application. One such example that might not
a priori be considered within the scope of the specific category is the DLR project
ALAADy [17–19]. However, as the specific category abolishes existing weight lim-
itations, within this project aircraft of more than two tons, take off weight are studied
in very low-level flight to conceptually deliver cargo in different use cases. The results
of this project are used in the design of the SORA process and are used to evaluate
the feasibility.

Concluding, for a class of unmanned aircraft systems, the specific category pro-
vides an alternative means to achieve safe operation compared to investing into
technical reliability.

8.4.2 Key Technologies for a Risk-Based Methodology

In the past years, a significant amount of research can be found focusing on functions
and capabilities of unmanned aircraft. To successfully exploit the potential of the risk-
based safety argumentation, we believe that additional questions have to be answered
in the near future:

Air Traffic Integration

Especially in very low-level altitudes, new concepts handling the different varieties of
unmanned aircraft have to be designed. The number of potential airspace participants
is huge and varying. The above argumentation will greatly benefit from new concepts
to dynamically assign airspaces [20] and possibly consider the operational risks
for airspace integration [19]. A crucial aspect is harmonization of detect and avoid
technologies both cooperative and non-cooperative (see above).

Safe Operation Monitoring

As mentioned above onboard monitoring of the operation conditions can be used to
assess the safety of a system during operation and thus reduce the effort of a priori
assurance. Combining with the above risk-based argumentation, this technology can
become a key enabler for the broad spectrum of technologies providing high levels of
automation but being difficult to qualify. For this case of monitoring, the conditions
supervised are the operation limitations used within the SORA process. Already
available special cases are position-based containment systems often referred to as
geofencing, cf. [21, 22]. Monitor systems can then be used to trigger contingencies
once the approved operation limitations impend to be violated.

Datalinks

Datalinks are used to command and control the unmanned aircraft. The SORA
enables to handle the reliability of the datalink in the context of the intended mis-
sion. This significantly reduces the overall requirements on the datalink and possibly
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enables alternative technologies to the so far dominating direct radio link and satellite
communication infrastructures. Especially, the interplay between a safe operation
monitor and automatic contingency management as independent means to ensure
safe operation of the aircraft has the potential to reduce the safety requirements on
the datalink and ground control station.

Risk-Based Aircraft Configurations

One of the crucial aspects of the SORA is the assessment of risks on ground [16].
Here, the ground impact of a crashing aircraft significantly influences the risk cat-
egorization. In this context, the safety characteristics of the aircraft configuration
itself become performance criteria on a comparable level as classical one as flight
speed, endurance, and take off and landing distances, see [18] as an example. With
other words, it might in this context be preferable to use an aircraft with little ground
impact than a high-performance configuration in the classical sense.

Scalable Industry Standards

Currently, standards to be applied in aviation are tools to achieve certain safety tar-
gets. A risk-based perspective allows scaling both, the effort to ensure integrity of
a function but also the level of rigorousness in assurance. Corresponding industry
standards will have to be developed. This concept is comparable to the design assur-
ance levels of the ARP4754 [23] or DO-187C [12] for components of the aircraft or
software. However, these levels focus on the impact a component failure has on the
aircraft. Instead, the scaling in the context of SORA refers to the impact an aircraft
failure has on its environment. Corresponding standards not yet exist, and existing
standards are not yet allocated to the different SAIL levels. Filling this gap will,
however, enable broader and safer application of UAS technology.

8.5 Certified Unmanned Aircraft Systems

Regulations for certified unmanned aircraft are still in development. However, with
the growing pace of upcoming regulations and changes regarding the specific cat-
egory, there are also new developments regarding traditional regulations and stan-
dards, also for manned aviation. This section will discuss new regulations regarding
performance-based standards as well as upcoming efforts for regulation and stan-
dardization of the autonomous manned transporter.

8.5.1 Performance-Based Standards

Recently, the concept of performance-based standards has been introduced into cer-
tification specifications. EASA and FAA are in the process of reorganization of the
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current CS-23 standard. The certification specifications will be replaced by objec-
tive requirements that are designed independent. The proposed new CS-23 will also
replace CS-VLA, due to the higher level of abstraction. This enables reduced efforts
in changing and adapting future means of compliance. It is expected that additional
standards will follow this example.

8.5.2 Urban Air Mobility

The aforementioned specific category introduces a scaled approach between open/
uncertifiedUASand classes of unmanned aircraft forwhich a full certification accord-
ing to existing airworthiness standards is foreseeable. Especially for next- generation
lower level airspace services—manned or unmanned—can be summarized as urban
air mobility (UAM) which may not necessarily be limited to urban operation. It
rather stands for a synonym of one of the most complex high-risk-type operations
that needs to be supported by trustworthy autonomy as a system, i.e., in the aircraft
and on the ground. With advances in sensor fusion, environment sensing, automated
decision-making, and flight control technology as well as an increase of UAS plat-
form maturity, the efforts and costs to achieve high levels of barrier implementa-
tions as well as high levels of design assurance may decline over time. The specific
category may comprise a feasible path to introduce and mature new technologies
that otherwise are prohibitively expensive and risky to introduce toward increas-
ingly autonomous manned aircraft. However, at the same time, current passenger
aircraft—from commercial airliners to general aviation and even ultralight sports
aircraft—are getting increasingly automated or receive an increase in automated
decision aids for the human pilot. As a result, a whole new kind of aviation industry
along with the partnership between research organizations and universities is look-
ing into autonomous passenger carrying aircraft (e.g., so-called air taxis) that either
are built to become increasingly autonomous or even autonomous by design, i.e., a
human pilot will be onboard until a certain trust into pilotless operation exists. Sev-
eral companies target this potential mass market. The market is particularly dynamic
for short haul connections (e.g., less than 30min flight time) andmay require vertical
take off and landing (VTOL) configurations. Prominent companies in this arena at
the writing of this summary are the mobility service Uber’s program Elevate,3 Air-
bus A3’s Vahana,4 Volocopter,5 Lilium,6 Ehang.7 Many more similar projects exist
with a growing number of contributors and competition. Thus, one may look into
online up-to-date resources for a more comprehensive set of current platforms and

3https://www.uber.com/info/elevate/, accessed 02-02-2018.
4https://www.airbus-sv.com/projects/1, accessed 02-02-2018.
5https://www.volocopter.com/en/, accessed 02-02-2018.
6https://lilium.com/, accessed 02-02-2018.
7http://www.ehang.com/ehang184/, accessed 02-02-2018.

https://www.uber.com/info/elevate/
https://www.airbus-sv.com/projects/1
https://www.volocopter.com/en/
https://lilium.com/
http://www.ehang.com/ehang184/
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projects, e.g., “eVTOL News”,8 or “Dragon Flyer”.9 The regulatory framework, for
the airframe as well as its autonomy technology package, is under intensive discus-
sion worldwide. So far, it remains unclear if novel autonomous passenger carrying
aircraft are subject to general aviation, especially the reorganized Part-23 (FAA CS-
23) which allows for novel performance-based rather prescriptive acceptable means
of compliance (AMC). Other aircraft categories for rotorcraft (FAA CS-27) may
follow toward such a regulatory reorganization. Since there are passengers on board,
these types of aircraft will have very rigorous objectives and activities as their core
certification requirements. How much today’s certification requirements for manned
aviation are identical or even adequate for those novel aircraft is an ongoing and
challenging discussion.

Besides these regulatory challenges, the evolving markets require a business case
assessment in order to validate affordability, customer requirements (e.g., novel type
of ride qualitymetrics) andmost importantly external stakeholder requirements (e.g.,
noise, environment footprint, etc.). Autonomy and the assurance thereof can con-
tribute feasible solutions to these challenging requirements. However, it may take
decades until state- of-the-art autonomous functions proved themselves to be trust-
worthy enough. The stakeholders within the UAM community expect the safety
targets (e.g., risk ratios, or target levels of safety) to be similar to today’s large com-
mercial airliners, such that a projected fleet size and number of operations per day
can proof probabilities of a catastrophic event in the order of 10−9 or less.

8.6 Conclusion

There are several challenges toward the introduction of unmanned aircraft into the
airspace, in particular regulation, certification, safety, and the heterogeneity of UAS.
Additional challenges come into play when autonomous UAS are considered, since
traditional certification approaches cannot handle autonomy.At the same time, auton-
omy can be used to implement failsafe system behavior and thus improve the overall
system safety. In this context, approaches to solve or mitigate these challenges have
been discussed.

From a regulatory perspective, the new concept of the specific operation category
is a framework to enable operation of UAS in a defined, restricted context in a scal-
able manner. The approach assures safety using a specific operation risk assessment
that uses a holistic view on the combination of UAS, operation, environment, and
pilot. On a technical level, runtime monitoring of the UAS plays an important role
to enable analysis of complex systems, identify the system status, assurance of safe
behavior. In particular, the possibility to supervise and constrain autonomous behav-
ior is identified as a key element to establish trust into autonomous UAS, using an
independent component. Additionally, a new standard regarding the safe bounding

8http://evtol.news/, accessed 04-02-2018.
9http://dragonflyer.biz/, accessed 04-02-2018.

http://evtol.news/
http://dragonflyer.biz/
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of complex functions combines regulatory efforts with technical advances of runtime
monitoring. The standard describes a framework architecture and requirements for
monitoring and triggering contingency actions.

As a result, recent developments and the combined use of new regulatory
approaches, new developed standards, and the concept of runtime monitoring to
implement fail safety gives a good basis for the assurance of autonomy for UAS
and thus possibly hint toward a timely integration of autonomous UAS into airspace.
Even if the regulatory framework will be adapted, implementations, use cases, and
the practical implications will be interesting to observe. As a second step of adapta-
tion of UAS, the topic of unmanned passenger transport and air taxis has the potential
to further revolutionize the aerospace domain.
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Chapter 9
Keeping up with Real Time

Reinhard Wilhelm, Jan Reineke and Simon Wegener

Abstract This chapter is concerned with timing verification of future avionics soft-
ware. We critically review a recent CAST position paper, identified as CAST-32A,
about certification issues connected to the use of multi-core architectures and show
that it leaves several issues unresolved. It introduces robust partitioning as a require-
ment for the feasibility of timing verification, but fails to precisely define it. We
give a precise notion of robust partitioning that guarantees temporal isolation and,
therefore, allows for separate timing analysis of tasks running on individual cores.
Sometimes, complete temporal isolation is impossible to achieve or will lead to very
poor resource allocation. In an ideal setting, one could analyze the timing behavior
of a set of applications executed on several cores in a compositional way. We discuss
the requirements for a correct analysis of the interference on the shared resources
of multi-core processors. Finally, we show how to configure an existing multi-core
architecture to enable compositional timing analysis.

9.1 Introduction

Many embedded control systems in airplanes are time critical, and this will remain
to be so. Fly-by-wire in planes dictates hard real-time requirements for embedded
control subsystems. The criticality of most of these systems requires verification as
stated by international standards such as DO-178-C. The satisfaction of real-time
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requirements is practically verifiable, i.e., sound and efficient verification methods
are available for quite powerfulmicroprocessors, used in the safety-critical embedded
systems industry.

The history of worst-case execution time (WCET) analysis started when Alan
Shaw proposed timing schemata for the determination of bounds on the execution
time of programs [1]. These use structural induction over the source program. Induc-
tion begins with execution-state independent, i.e., constant execution times for mem-
ory accesses and elementary operations. This assumption was no longer valid when
high-performance microprocessors were introduced in embedded systems, which
increased the average-case performance through the use of caches, pipelines, and
speculation. The execution times of instructions became dependent on the execution
state of the architecture, e.g., the time for a memory access became dependent on
the state of the cache.

The first static timing analysis for such a complex processor was described in
[2]. It used abstract interpretation to compute invariants about the execution states
at all program points and exploited these invariants to safely bound the execution
times of instructions [3]. This approach, instantiated for quite complex processors
became the de-facto standard in industrial applications. The advent of multi-core
architectures increased the complexity of static timing analysis to unacceptable orders
of magnitude. Both the analysis performance was decreased and the precision of the
results was reduced by the interference on shared resources [4].

The structure of this chapter is as follows: Sect. 9.2 describes and comments
on a recent CAST position paper about certification issues connected to the use of
multi-core architectures [5]. This position paper is shown to leave several issues
unresolved. In particular, robust partitioning is introduced as a requirement for the
feasibility of verification. However, this notion is imprecisely defined. Section9.3
makes precise a notion of robust partitioning that would guarantee temporal isolation
and, therefore, allow separate timing analysis of tasks running on individual cores.
Sometimes, complete temporal isolation is impossible to achieve or will lead to very
poor resource allocation. Section9.4 discusses the requirements for a correct analysis
of the interference on the shared resources of multi-core processors. Finally, Sect. 9.5
shows how to configure an existing multi-core architecture to enable compositional
timing analysis.

9.2 Certification Rules for Multi-core Processors
in Avionics Systems

CAST-32A [5] is a position paper about the use of multi-core processors (MCPs) in
safety-critical avionics systems, which has been coordinated among representatives
from certification authorities in North and South America, Europe, and Asia. It is
concernedwith topics that could impact safety, performance, and integrity of airborne
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avionics systems. In this chapter, we focus on the problems for the real-time behavior
caused by using MCPs and ignore safety and integrity aspects.

The paper assumes the following development process including the verification
of timing requirements: Physical properties have dictated the required reaction times
of applications. These lead to what CAST-32A calls the allocation of execution
time. Timing verification needs to show that the allocated times suffice to execute
the applications. As far as possible, resources like memory, caches, time slots in a
chosen bus protocol are statically allocated, and a scheduling strategy per core is
chosen.

CAST-32A contains a clear analysis of the problems connected to the use ofmulti-
core platforms (MCPs) with shared resources for the implementation of time-critical
avionics applications.1 The contention for shared resources between applications
usually causes delays in access to the resources. These delays are a form of time
interference between applications, which can cause applications to take much longer
to execute than when executing on their own. This could prevent them from having
sufficient time to complete the execution of their safety-critical functionality.

So, the execution time of an application is composed of the time, Te, it would
need if all resources were exclusively available for it and the additional delays, Ti ,
it encounters due to interferences by co-running applications accessing the same
resources. Any design and implementation where Te + Ti exceeds the deadline vio-
lates the timing requirement and has to be revised. Timing verification, for complexity
reasons, introduces uncertainty and in consequence imprecision into both time com-
ponents. Hence, even if Te + Ti would not exceed the deadline (the allocated time),
the bounds T̂e, T̂i for the two times may contain so much overestimation that the
satisfaction of the deadline cannot be shown. T̂e is assumed to be determined by
a standard single-core timing analysis. The achievable precision and the necessary
effort to determine T̂i heavily depend on the underlying multi-core architecture, the
bus protocols, and, in general, the way resources are shared.

To ease timing verification, CAST-32A proposes robust partitioning, which is
said to be fulfilled if both robust resource partitioning and robust time partitioning
are achieved.

Robust Resource Partitioning is, unfortunately, not precisely defined, but said to
be achieved when

1. Software partitions cannot contaminate the storage areas for the code, I/O or
data of other partitions.

2. Software partitions cannot consume more than their allocations of shared
resources.

3. Failures of hardware unique to a software partition cannot cause adverse effects
on other software partitions.

Thefirst and the last requirementsmainly concern safety and integrity aspects. The
second leaves open what it means to consume a resource. This requirement seems to

1Quotes from the paper are given in italics.
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make sense for bandwidth resources, where it would mean that an application should
not need more bandwidth than it was allocated.

Robust Time Partitioning is achieved when, as a result of mitigating the time inter-
ference between partitions hosted on different cores, no software partition consumes
more than its allocation of execution time on the core(s) on which it executes, irre-
spective of whether partitions are executing on none of the other active cores or on
all of the other active cores.

This term is no more precisely defined as it allows the mitigation of the time
interference between partitions hosted on different cores, where unfortunately the
term mitigation remains undefined. One possible interpretation of mitigation is that
remaining sources of time interference on the hardware are avoided by how the soft-
ware uses the hardware. In Sect. 9.3, we give an overview of hardware and software
approaches to achieve temporal isolation, where temporal isolation corresponds to
our interpretation of what robust time partitioning is meant to achieve.

Only if robust partitioning is achieved, the worst-case execution times (WCETs)
of applications can be determined separately: Separate determination of theWCET of
an application without any other applications executing is only valid if the applicant
can demonstrate that they have an MCP Platform with Robust Partitioning or that
time interference from other applications is avoided ormitigated for that application.
Unfortunately, no guidance is given as to which methods should be used to obtain
WCETs. We assume static analysis to be the only viable option in safety-critical
domains.

If robust partitioning cannot be achieved, the WCET should be determined by
analysis and confirmed by test on the target MCP with all software components
executing in the intended final configuration. In such a case, WCET analysis needs
to correctly account for interference with shared resources. In Sect. 9.4, we discuss
requirements for sound timing analysis in the presenceof interference, i.e., if temporal
isolation is not guaranteed.

9.3 Achieving Temporal Isolation

In this section, we discuss approaches to achieve temporal isolation between appli-
cations running on different cores of a multi-core processor. As in [4], we distinguish
two types of resources:

Bandwidth resources: These may not serve multiple clients at the same time, and
thus simultaneous accesses lead to delays for some of the accessing tasks. Buses
are the prime example for bandwidth resources.

Storage resources: Prime examples for storage resources are all forms of memo-
ries, e.g., SRAM, DRAM, and caches. Shared storage resources pose additional
challenges compared to bandwidth resources: (1) The latency of some storage
resources, in particular caches and DRAM is history dependent. If accesses from
different clients are interleaved they affect each other’s future access latencies in



9 Keeping up with Real Time 125

ways that are hard to predict. (2) Internally,most storage resources are banked, i.e.,
they consist of multiple smaller memories, which operate more or less indepen-
dently from each other. (3) As storage resources may be used for communication
they may expose data races when software is migrated from single-core to multi-
core architectures.

9.3.1 Bandwidth Resources

When bandwidth resources, like buses, are shared, multiple clients may attempt to
access the resource at the same time and thus cause a conflict.Arbitrationmechanisms
are used to resolve such conflicts, granting access to only a single client at a time.
Arbitration mechanisms can roughly be divided into two classes:

1. Time-driven arbitration follows a predefined schedule, which assigns time slots
of fixed size to particular clients. This is commonly referred to as TDMA (time-
division multiple access).

2. Event-driven arbitration mechanisms decide at runtime, which client to grant
access to the resource. Usually, suchmechanisms base their decision on the access
history of all clients. Examples are round robin and FCFS (first-come-first-serve)
arbitration.Priority-based arbitration assigns priorities to clients andgrants access
to the highest priority client that is currently requesting the resource.

Time-driven arbitration naturally results in temporal isolation. However, it is not
work conserving and thus generally exhibits lower average-case performance than
work-conserving event-driven arbitration schemes. A challenge then is to find a good
static configuration of time-driven arbitration to minimize the worst-case execution
times of tasks [6]. Shah et al. [7] present an arbitration scheme in which unused time
slots are redistributed at runtime among other clients, thus combining the worst-case
performance guarantees afforded by time-driven arbitration, while still being work
conserving. This results in the loss of temporal isolation, however, and thus makes
timing verification more challenging.

By nature, event-driven arbitration does not result in temporal isolation. However,
in the presence of event-driven arbitration, temporal isolation can still be achieved
at a higher level of abstraction: Task and execution models, such as the Predictable
Execution Model (PREM) [8] and the deterministic execution model [9], have been
proposed in which accesses to shared resources are exposed at the scheduling level.
Then offline scheduling can guarantee that no two tasks accessing shared resources
may be running simultaneously and thus cause resource conflicts.

9.3.2 Storage Resources

In this section, we consider the first two properties of storage resources, which have
been mentioned above:
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1. History-dependent access latencies
2. Banked memories.

We refer to [10] for a discussion of how data races may be reduced or eliminated to
facilitate a transition from single-core to multi-core architectures.

Both caches and DRAM-based memories feature history-dependent timing. The
contents of a cache depend on its access history: usually, data that has been requested
recently is more likely to be cached than data that has not been requested recently.
Different interleavings of requests fromdifferent clientsmay result in different access
histories and thus different cache contents,whichmay strongly affect execution times.
For example, on an Intel Core 2 Quad processor, Radojkovic et al. [11] observe a
14× slowdown, compared with its execution time in isolation, when an application is
run in parallel with a cache-stressing microbenchmark. Similarly, DRAM latencies
are highly variable due to the presence of row buffers, which serve as a small cache,
buffering the contents of the last accessed row within each DRAM bank.

To achieve temporal isolation, caches can be partitioned spatially. Set-associative
caches can be seen as two-dimensional structures: logically, they consist of a number
of cache sets, each of which consists of a number of cache lines. Physically, set-
associative caches are organized as a set of independent memories, called cache
ways, each of which contains one of the cache lines of each cache set. Due to this
organization, some caches have hardware support for way-based partitioning [12–
14], i.e., partitioning the cache into multiple private caches of a smaller associativity,
each accessible from one of the cores of a multi-core architecture.

If no hardware support for partitioning is available, caches can also be partitioned
in software [15, 16]: If virtual memory is employed and the shared cache is physi-
cally indexed, then set-based cache partitioning can be realized in software by page
coloring [17]: In page coloring, physical pages mapping to the same set of cache
sets are assigned the same color. Then, the set of colors is partitioned among the
different processes. Virtual pages belonging to a particular process are only mapped
to physical pages of the colors assigned to that process.

Under way- and set-based partitioning, the hit/miss behavior of applications
becomes independent of co-running applications. Given a powerful interconnect
between the cores and the different cache ways, way-based partitioning also elimi-
nates possible bandwidth contention, as the distinct cache ways may service requests
simultaneously. This is not the case under set-based partitioning,where accesses from
different applicationsmay still attempt to access the same cache bank simultaneously,
leading to delays, which have to be accounted for in timing analysis.

DRAM and some SRAM memories are banked, i.e., they consist of multiple
independent memory banks. As in way-based cache partitioning, the banks of such
memories can be partitioned among different clients to enable temporal isolation.
For DRAM, this has been demonstrated in both hardware [18] and software [19]
solutions. Similarly, the many-core architecture Kalray MPPA-256 [20] consists of
16 clusters, which each contain 16 cores. Each of the clusters also contains 16 SRAM
banks, which can be flexibly allocated to the 16 cores of the respective cluster [21].
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9.4 Multi-core Timing Analysis in the Presence
of Interference

It will not always be possible to achieve full temporal isolation. Also, if the utilization
of a particular resource is low, partitioning such a resource for temporal isolationmay
not be desirable for efficiency reasons. In such cases, the remaining interference and
its effect on response times need to be safely bounded.

One can distinguish at least two approaches to timing analysis for multi-core
architectures:

1. In a fully integrated timing analysis [22–24] tasks running on different cores
are simultaneously analyzed, precisely capturing all possible interleavings of
resource accesses from different cores. While this approach promises the highest
possible precision, it appears to be practically infeasible for realistic systems due
to the enormous number of system states.

2. Compositional timing analysis [25–27] can be seen as a natural extension of the
classical two-step approach applied routinely on single-core architectures:

a. Low-level analysis computes the “resource demand” of each task for each
shared resource. In a system with a shared bus, low-level analysis would
compute a bound on the task’s number of bus accesses and on its execution
time on the processor core assuming the task is run in isolation.

b. Given such task characterizations, schedulability analysis [28] then deter-
mines, whether each task can be guaranteed tomeet its deadlines, accounting
for the interference it may experience on each of the shared resources.

We believe that compositional timing analysis is the most promising approach as it
does not suffer from combinatorial explosion as a fully integrated timing analysis
would.

However, for contemporary multi-core architectures it has recently been shown
[29] that so-called amplifying timing anomalies [30] render naive compositional
timing analysis unsound. The same paper also proposes an analysis approach that
enables compositional analysis at the cost of a more expensive low-level analysis.
The other option is to employ predictablemulti-core architectures that are guaranteed
to enable sound compositional timing analysis by construction [31].

9.5 Case Study: Configuring a Multi-core Architecture
for Timing Analysis

The Infineon AURIX TC27x [32] (Fig. 9.1) is a multi-core processor widely used
in the automotive domain. It consists of two TC1.6P (performance) cores and one
TC1.6E (efficiency) core. One of the performance cores and the efficiency core have
attached a checker core such that they can run in lockstep mode. This lockstep mode
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Fig. 9.1 Block diagram of the Infineon AURIX TC27x (Based on [32])

does not affect the timing behavior of the system (except in case of disagreement, then
a failure is reported to the Safety Management Unit, which may trigger a handler).

We will briefly describe some of the hardware features of the AURIX TC27x
that are relevant for the predictability of this architecture. Essentially these concern
the avoidance or the reduction of the interference between the different cores on the
shared resources. However, we will also indicate which setting of core-local features
improve the precision of local WCET analysis.

9.5.1 Shared Resources

Memory and Caches

As can be seen in Fig. 9.1, each of the cores has a data scratchpadRAMand a program
scratchpad RAM. These can be also accessed from the other cores.

The three cores of the AURIX TC27x are attached via the Program Memory
Interface (PMI) to the SRI Cross Bar (SRI), and via the Data Memory Interface
(DMI) to the SRI and the System Peripheral Bus (SPB). All peripherals are attached
to the SPB except the On-Chip Debug Support (OCDS), which is connected to the
SRI via the DMA interface. The Local Memory Unit (LMU) has a shared SRAM,
and the ProgramMemory Unit (PMU) has two independent program flash memories
and a data flash memory. They are attached to the cores through the SRI.

Each of the flash memories has its own port on the SRI.
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SRI Cross Bar

The SRI (Shared Resource Interconnect) Cross Bar connects up to 16 bus masters
with up to 15 slaves (and one additional default slave) via point-to-point connections
(see Fig. 9.2). The default slave has two purposes. First, it handles the accesses to
the SRI configuration registers. Second, the error handling concerning the SRI is
done here. The three DMIs and three PMIs are master devices for the SRI, as is the
DMA interface. A resource conflict happens when two or more master devices try to
access the same slave device. Each slave has its own arbiter to handle these resource
conflicts (see Fig. 9.3).

The arbitration rules are as follows: On the top level, the priorities of the master
devices decide which request is handled first. The highest priority is 0, the lowest
priority is 7. Only one master is allowed per priority, except for priorities 2 and
5. Here, an additional level of arbitration is performed. All masters with priority 2
form a round robin group, the masters with priority 5 form another one. Within these
groups, round robin scheduling is done for arbitration.

Moreover, the arbiters contain a mechanism for starvation prevention. Starvation
can happen if some high priority master continuously accesses the same slave such
that a master with lower priority never gets its access granted. To prevent this, some
kind of priority ceiling is performed when an access is not granted for a configurable
timespan.

The SRI Cross Bar is well documented (about 70 pages) in the AURIX TC27x
user manual [32]. It should be possible to derive the necessary formulas to predict the
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number of wait cycles depending on the number of conflicting accesses. However,
the concrete derivation of these formulas remains future work.

9.5.2 Avoiding or Reducing Interference

In the following, we propose a configuration to minimize the amount of resource
conflicts when used in a multi-core scenario:

• Let each of the performance cores use one dedicated program flash memory to
avoid conflicting accesses. Let the efficiency core use the data flash if needed.

• Let the cores use the core-local data scratchpad instead of the shared RAM when-
ever possible to reduce conflicting accesses. In particular, place the stack into the
core-local data scratchpad. If possible, have data preloaded from the shared RAM
and data flash to the local scratchpad memories to control when accesses to the
shared memory happens.

• Do not let the other cores access the core-local scratchpad memories.
• Let only one core access I/O channels (CAN, FlexRay, …). Assign each I/O
channel in use to a specific core.

9.5.3 Single-Core WCET analysis

aiT supports the Infineon AURIX TC27x and can be used to compute single-
core WCET bounds for each of the three cores. Only the write-back caches are not
supported by aiT. Hence, the data caches need to be bypassed.
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Moreover, the analysis model of aiT assumes that no other SRI master devices
besides the analyzed core access the same slaves, i.e., that no resource conflicts
happen in the SRICross Bar. The interference costsmust be incorporated in a system-
level analysis.

Branch Prediction

Both the TC1.6P and the TC1.6E cores use branch predictionmechanisms to improve
the performance. The TC1.6E core uses a static and the TC1.6P core uses a dynamic
branch prediction scheme. For the latter feature, a sound static analysis has to take
both cases—correct prediction and misprediction—into account.

Given the fact that the TC1.6P pipeline can execute up to three instructions in
one clock cycle, and its use of dynamic branch prediction, the existence of timing
anomalies is likely [31]. However, we assume that the AURIXs is a compositional
architecture with constant-bounded effects [33].

9.6 Conclusions

Multi-core processors with shared resources pose a severe problem for sound and
preciseWCET analysis. Integrated analyses of all concurrently executing, potentially
interfering tasks on all cores will not scale. We argue that a compositional approach
will be efficient and sufficiently precise. We also show how a popular multi-core
processor can be configured to improve analyzability.
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Chapter 10
Aerospace Engineering Curricular
Expansion in Information Systems

Ella M. Atkins

Abstract This chapter investigates specific approaches to evolve the Aerospace
Engineering curricula to increase coverage of the fundamentals of computer science
and deepen student experience in programming. First, existing K-12, Aerospace
Engineering, and Computer Science and Engineering curricula are examined. Mul-
tidisciplinary programs including robotics and Cyber-Physical Systems (CPS) are
reviewed to provide insight into potential directions in which an Aerospace-centric
program might expand. Student, faculty, and industry interests offer insight into key
Computer Science and Engineering (CSE) content to infuse into next-generation
Aerospace curricula. The approach being taken at the University of Michigan, the
author’s home institution, is described, including plans to increase curricular flexi-
bility and introduce a new course providing students background in key computer
science concepts such as data structures and complexity, computational science with
application to Aerospace analysis and design, and embedded data management and
control. A discussion of potential future curricular extensions into human–machine
systems and electromechanical devices concludes the chapter.

10.1 Introduction

Modern Aerospace systems integrate traditional physical vehicle structural and
mechanical components with avionics, software, and people. Embedded sensors and
microcontrollers have substantially reduced aircraft weight and increased reliability
through local data processing, redundancy, and lightweight communication. High-
bandwidth sensor data streams and advanced decision algorithms require capable
onboard computers. Computers with increasingly complex software are now tasked
with managing the payload, controlling vehicle motions, and supporting increas-
ingly autonomous decision systems. Manned vehicles require software and devices
to assure an onboard pilot remains situationally aware whereas unmanned vehicles
must rely on communication links to remote ground or mission control stations.
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Operator interface designs require careful consideration of real-time data stream
and communication link properties as well as human factors. A twenty-first-century
Aerospace system designer faces the difficult challenge of understanding both the
traditional physics-basedmodels underlying structure, aerodynamic, propulsion, and
flight dynamics foundations as well as understanding the computer science founda-
tions necessary to design, implement, and validate/verify the avionics and software
supporting onboard and network-wide data-to-decision systems.

To face this challenge, the industry has staffed Aerospace systems design teams
with diverse technical experts organized to collectively provide the breadth and depth
of expertise needed to produce modern Aerospace systems. For example, to design
a fighter or transport aircraft, teams of Aerospace engineers propose and optimize
aerostructural and vehicle control designs; teams of electrical engineering propose
and optimize avionics and power systems designs; teams of computer scientists pro-
pose and optimize onboard, network, and off-board software; and teams of human
interface experts, including pilots, propose logical user interfaces. Engine manufac-
turers organize into similar subteams to produce efficient FADEC (Full Authority
Digital Engine Control)-equipped products that can be hosted on a variety of air-
frame designs. Specialized subteams make sense so long as the subsystem designs
can be developed independently, with consideration of design elements exclusively
within that field of study. For example, an Aerospace engineer offering Computa-
tional Fluid Dynamics (CFD) expertise will still have sufficient background in rigid
body vehicle dynamics and structures from their undergraduate studies to communi-
cate effectively with vehicle control and structural experts. Electrical engineers will
have sufficient background in analog, digital, and power systems to optimize over all
avionics system elements. Computer scientists will similarly have sufficient back-
ground in logic, data structures, algorithms, and software engineering practices to
work as a team despite specializations ranging from real-time embedded computing
to artificial intelligence and cybersecurity. Human factors or cognitive engineering
teams understand operators and ensure interfaces are informative, intuitive, and not
distracting/misleading. Human-centered designs assure the “people in the system”,
pilots, remote operators, passengers, the overflown public, remain situationally aware
and are comfortable rather than threatened.

These four subteams form the four pillars supporting the modern “Aerospace Sys-
tem” enterprise as shown in Fig. 10.1: (Traditional) Aerospace Engineering, Elec-
trical Engineering, Computer Science, and Human Factors and Operations. With
reference to the USA education system, Aerospace system designers enter higher
education programswith a K-12 background and first-year university experience that
is nearly common across the engineering fields. This foundation provides excellent
coverage of traditional mathematics through Calculus and the traditional sciences,
e.g., physics and chemistry. Computer science, circuits, and human–machine sys-
tem exposures tend to occur through extracurricular activities in robotics or game
development, requiring universities to fill knowledge gaps in these areas. Following
a nearly common year 1 curriculum, university students select one of the “pillars”
or majors and specialize in that area for the remainder of their degree. Project-based
experiences can expose students to the challenges related to other “pillars”, but a
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Fig. 10.1 Foundations of a
Modern Aerospace System

minor or double major is required for a student to gain depth in any of these other
pillar areas.

As Aerospace systems more tightly couple Fig. 10.1 “pillars” to achieve new
levels of performance, it is clear new graduates will require a new level of crosscut-
ting expertise. Today’s entering college students increasingly recognize that future
Aerospace Engineers will benefit from an improved foundation in computer sci-
ence, while future Computer Scientists electing a career in Aerospace system design
recognize they will benefit from improved foundation in vehicle aerostructural, elec-
tromechanical, and control systems. At the University of Michigan, we find evidence
of the former in terms of the steadily increasing rates at which our Aerospace under-
graduates pursueComputer Science minors or doublemajors.Wefind evidence of the
latter in terms of the steadily increasing rates at which Computer Science undergrad-
uates pursue robotics-centric coursework, research experiences, and student teams.
In our growing robotics graduate program, entering students are eager to learn what
they do not know. In particular, Aerospace and Mechanical Engineering graduates
seek knowledge of software and autonomy, while Computer Science and Engineer-
ing graduates seek knowledge in electromechanical (robot) system design, build,
and test. While robotics indeed provides multidisciplinary exposures, knowledge of
the domain (e.g., Aerospace) tends to be limited, and graduates have statistically
selected employment outside the Aerospace sector. It therefore remains critical for
the Aerospace Systems community to work toward improved holistic education in
Aerospace and Computer Science for the twenty-first-century workforce.

Researchers and educators have recognized the engineering/computer science
curricular gap for more than a decade. The National Science Foundation (NSF) has
established a robust Cyber-Physical Systems (CPS) program aimed at encouraging
researchers in traditional engineering and computer science disciplines to closely
collaborate on crosscutting researchprojects and to improveCPSeducationgenerally.
The robotics community has also shared the vision of crosscutting expertise, placing
importance on tight integration of sensors and mechanisms with capable perceive-
decide-act logic and code. Independent programs dedicated to CPS and/or robotics,
though still the exception rather than the rule, can offer guidance on what is possible
in crosscutting curricular programs.
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This paper proposes potential strategies for improving the exposure of Aerospace
students to Computer Science foundations, and improving the exposure of Com-
puter Science students to Aerospace/Robotics. Legacy curricula, degree credit lim-
its, students’ interests, and faculty expertise are all critical factors to examine in this
context. Higher education curricula are already packed with required courses, so
some sacrifice in traditional foundational background is required to maintain degree
credit limits. Curricular additions must therefore be defined alongside methods to
relax existing coursework requirements when needed. This paper is structured as
follows. First, background in K-12 foundations, undergraduate Aerospace Engineer-
ing, and undergraduate Computer Science curricula is presented. Next, efforts to
establish multidisciplinary programs in CPS and robotics are summarized, along
with a review of open questions that must be addressed when considering options to
infuse computer science into traditional engineering programs. Specific initiatives
to improve computer science coverage in the University of Michigan’s Aerospace
Engineering curriculum are described in the context of student, industrial advisory
board, and faculty input. The paper concludes with a summary of presented strategies
and remaining challenges.

10.2 Current Curricula

This section first reviews typical student preparation for Aerospace Systems careers
in precollege (K-12) curricular and real-world exposures.Next, traditionalAerospace
Engineering (AERO) and Computer Science and Engineering (CSE) curricula are
reviewed in the context of the author’s current institution, theUniversity ofMichigan.
The author recently published a survey of computational course requirements for
Aerospace Engineering programs in the USA [1]; results indicateMichigan’s current
Aerospace curricula are representative as discussed further below.

10.2.1 K-12 Education

Today’s youth have cell phones and access to laptop and/or desktop computers. Teens
communicate fluently online and very quickly embrace new apps. Higher education
courses can therefore assume a student will easily use a Windows environment,
downloadable apps, and course web pages. Students will have significant experience
with online search engine use and will likely find relevant YouTube and Wikipedia
pages faster than faculty.Many students have had “technology” courses inwhich they
learn to use graphics and office software packages. These courses teach navigation
through menus, websites, and disk/cloud storage options. However, K-12 does not
yet provide consistent coverage of computer science fundamentals, resulting in a
significant gap between “usage” of an app and “understanding” of the code needed
to realize that app. Because the K-12 curriculum is still struggling to establish a
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rigorous and consistent computer science curricular standard, K-12 educators often
rely on extracurricular activities such as team-based robotics or gaming competitions
to at least attract students willing to devote their spare time to such pursuits.

The current state-of-the-practice inK-12 education has the following results. First,
most all K-12 graduates are comfortablewith “apps” and can easily communicate and
navigate using online resources. Some K-12 students have computer programming
experience for activities such as robotics and gaming, but few K-12 students have
knowledge of computer science foundations. In contrast, most all K-12 graduates
entering a top engineering program will be well versed in math and physics, as
evidenced by the fact that most undergraduates arrive at top-tier universities with
Advanced Placement (AP) math and/or physics credit.

K-12 students with computer programming exposure certainly capitalize on this
exposure in their improved conceptual understanding. However, because program-
ming experiences are primarily extracurricular, no specific foundation can be pre-
sumed at a university. What language has a student used, e.g., C++, Java, Python,
Basic, JavaScript? Is the student’s exposure general or specialized to the particu-
lar extracurricular activity, e.g., JavaScript for Minecraft, Arduino C code loops for
robots? Because even students with computer programming background in K-12
have such diverse exposures, entry-level college courses cannot assume proficiency
in specific procedural or object-oriented code foundations, nor can such courses
assume all students have even basic mastery of a common programming language.
As a result, freshman programming courses, evenwithin a top college of engineering,
have to “start from scratch”.

Researchers in K-12 Computer Science (CS) education have long studied the
challenges of establishing a standard curriculum ensuring rigorous K-12 student CS
preparation. Hubwieser et al. [2] provide a statistical overview of CS education
programs internationally, revealing that the struggle to establish a consistent and rig-
orous K-12 education in CS is worldwide. This study [2] presented statistical results
on CS educational terminology, curricular competencies and goals, learning content,
assessment strategies, and teacher training requirements. Terminologywas varied and
somewhat challenging to precisely correlate, a product of the relative youth of CS in
comparison to established subjects such as physics. Terminology variance led to large
sets of goals and competencies, though aggregation led to “super-categories” such
as “Representing, Understanding, Creating, and Testing Algorithms”. In the final
analysis, the following languages were taught in more than one country surveyed:

• Java,
• C++, C,
• Python,
• AppInventor,
• BASIC, VisualBasic,
• HTML,
• JavaScript, and
• Pascal.
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The above list represents an impressively broad suite of languages with different
features. Evenwhen a student has had the opportunity to pursueK-12CS coursework,
this breadth in language choices illustrates a major challenge in student preparation
inconsistency for entry-level engineering programming courses.

Perhapsmore important than programming language is foundational concept cov-
erage. Per Ref. [2] study, the following curricular content was covered in over half
of the surveyed countries’ curricula: algorithms, applications, computer and com-
munication devices, networks, data structures, database systems, information and
digitalization, CS mathematics, modeling, object-oriented concepts, operating sys-
tems, problem-solving, and programming. This is an extensive list that sets a high
mark for K-12 CS educators; K-12 coverage of this set of competencies could revolu-
tionize our ability to build toward advanced CS concepts in all engineering programs.
That said, there remains a substantial gap between the ideals of [2] and the actual K-
12 CS preparation observed in students entering US university engineering programs
today.

To reflect howsignificantly the current deficiency inK-12 computer science educa-
tion impacts a student’s educational experience, consider for comparison the current
K-12 curricula in traditional mathematics and physics. Any K-12 student aspiring
to gain admission to a top-tier university engineering program is advised to take as
many math and science courses as they can handle in their K-12 education, with
emphasis on basic math skills, algebra, geometry, and calculus. Top students tend
to complete all the math available in their high schools, with many adding courses
from local community colleges in their senior year. Most high schools now offer
some form of calculus, and the majority of students entering a top university earn AP
exam credit to place out of at least the first-semester Calculus course. Top students
in good schools also pursue AP science credit in physics, chemistry, and biology.
This consistent, long-term series of K-12 exposures in math and science provides an
undeniable foundation on which college coursework can directly build. For example,
even aCalculus I course can assume all entering students understand basicmath oper-
ations, algebra, geometry, and trigonometry. If a student is not prepared for Calculus
I, it is expected the student will “catch up”. This is in sharp contrast to the necessary
“no student left behind” posture a first-year programming course must take, which
ultimately results in a one-term programming course covering only basic concep-
tual material more akin to Algebra I than to Calculus. As engineering students enter
their second year of an undergraduate program, most are still at a low proficiency
level in computer programming. As described below, computer science programs
incrementally build student knowledge as needed, whereas traditional engineering
programs tend to “sweep this deficiency under the carpet” in courses emphasizing
math/physics fundamentals. This deficiency can no longer be ignored in preparing
the twenty-first-century student for anAerospace Systems career, regardless ofwhich
Fig. 10.1 pillar a student selects.
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10.2.2 Traditional Aerospace Engineering (AERO)
Curriculum

The traditional Aerospace Engineering curriculum is built on a foundation of K-12
plus first-year engineeringmath, science, and humanities coursework. Over a century
ago, academia recognized the need to splitAeronautics fromMechanical Engineering
to enable focus on the atmosphere and flight vehicles in coursework. Researchers
envisioned a timewhen space flightwould also be possible, resulting in the creation of
Aerospace aswell asAeronautics andAstronautics departments atmajor universities.
Because of its heritage in mechanical engineering, Aerospace fundamentals were
organized around topics with analogs in Mechanical Engineering: structures and
materials, gas dynamics (a generalization of aerodynamics and propulsion), and
vehicle flight dynamics and control. This “pillar structure” for traditional Aerospace
Engineering is shown in Fig. 10.2.

Early aircraft designs focused on optimizing aerodynamics and propulsion sys-
tems. Structures have evolved from fabric and wood to metal and now to composite
materials. Early aircraft hosted mechanical actuation and instrumentation systems.
Aircraft and spacecraft have evolved to fly-by-wire vehicle designs, and Unmanned
Aircraft Systems (UAS) are fully capitalizing on lightweight, low-cost avionics com-
ponents. Increasingly-autonomous onboard data-to-decision systems are found on
most mass-produced Aerospace vehicles. Still, Aerospace foundations focus on the
traditional pillars, though laboratory and design project experiences have evolved to
capitalize on modern hardware and software.

The current University of Michigan Aerospace Engineering curriculum has tra-
ditional content and is shown in Fig. 10.3. Note that general elective credits are not
shown. The University requires the core engineering courses shown in the left col-
umn. The next category, Core Aerospace, illustrates the traditional “three-pillar”
organization of lecture-based coursework. We currently require a sequence of three
laboratory-based courses. Figure10.3 groups an introductory Aerospace course, a
sophomore seminar, and a senior system design course in a single category. Cur-

Fig. 10.2 The traditional
pillars of Aerospace
Engineering
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Fig. 10.3 University of Michigan Aerospace Engineering (AERO) curriculum (current)

rently, all Aerospace majors must take an introduction to materials class (taught in
Materials Science and Engineering (MSE)) along with an electronic circuits class
(taught by Electrical Engineering (EE)), but this is expected to evolve, as discussed
later in this paper. The final Aerospace degree requirement, beyond general electives,
is a Technical Elective distribution of 7 credits, 3 of which must be acquired in an
advanced math course.

As shown in Fig. 10.3, there is very little required CS content in Michigan’s
current Aerospace Engineering degree program. Required courses containing some
CS content are highlighted in the figure. A single freshman programming course
introduces engineering students to CS concepts, but as discussed above, this course
must cater to students across all K-12 preparation levels. Further, the course needs
to cater to all engineering majors, resulting in emphasis on two languages (C++
and Matlab), which further limits coverage depth. This freshman course was never
intended to cover CS theory given its main priority to ensure students have at least
some programming proficiency for upper-level engineering coursework.

At the sophomore level, two required Aerospace courses require computer pro-
gramming content. The “Introduction to Aerospace” course, currently taught by the
author and two other Aerospace faculty interested in improving the Aerospace CS
curricula, has evolved to require Matlab for every assignment and every exam. Early
lectures assure students have understanding of the basic language mechanics, impor-
tant especially for transfer students who have not seen Matlab previously. Assign-
ments then progressively build on numerical methods and plotting capabilities to
expose students to the use of amathematical programming language for aerodynamic,
steady flight, orbit, and launch analyses. The “Introduction to Aerospace Systems”
laboratory course is structured as a custom hovercraft design, build, test experience
in which students learn Computer-Aided Design (CAD), composite manufacturing,
and apply basic principles of structural and aerodynamics in their iterative designs.
Once students are able to successfully drive their hovercraft via radio-control link,
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they are asked to write specific Arduino C control code functionality. These two
courses give students some sophomore-level exposure to analysis and embedded
code development. These exposures are important, and they reinforce concepts and
the languages covered in freshman programming. However, these exposures are not
currently followed-through with any further CS content, resulting in limited maturity
and confidence for students who choose not to take elective courses involving CS
theory or practice.

The Aerospace Engineering graduate curriculum currently follows the same pillar
structure organization depicted in Fig. 10.2. While traditional structures, gas dynam-
ics, and control theory courses lay the traditional foundation for students pursuing
degrees in this area, specific courses have been added to address computational sci-
ence and real-time decision-making areas crosscutting with computer science. In gas
dynamics, courses in numerical methods and Computational Fluid Dynamics (CFD)
expose students to numericalmethods and also computational strategies formanaging
high-performance computing resources needed to solve most important Aerospace
flowfield problems. In flight dynamics and control, courses in flight software systems
andAerospace information systems have been developed to help students gain further
competence in embedded coding for autonomous control, as well as exposing stu-
dents to CS theoretical underpinning they have not previously seen. The information
systems course, in particular, covers concepts from data structures and complexity
through finite state automata and discrete search. Our experience is that students find
the theoretical underpinnings fairly easy to grasp but find coding projects muchmore
difficult. This finding is not surprising given that students have substantial practice
with pencil-and-paper problems in almost every undergraduate Aerospace course,
but students have mostly used short Matlab codes to assist with Aerospace problem-
solving thus are not well equipped to scale their coding experience to larger projects
implemented in a lower level language such as C or C++.

10.2.3 Computer Science and Engineering (CSE)
Curriculum

Computer Science and Engineering (CSE) is a relatively new discipline in com-
parison to Aerospace Engineering. Many universities including the University of
Michigan offer two forms of computer science degrees: one within a humanities
umbrella (e.g., literature, science, and arts) and another in engineering. New degrees
in data and information technology have also emerged in recent decades. Because
AerospaceEngineering andCSEhave themost natural overlap, CSE is theCS-related
degree of reference for this paper.

Figure 10.4 shows required coursework for the University of Michigan CSE pro-
gram. The left column of core engineering coursework is the same as core course-
work for Aerospace except that CSE students are required to take linear algebra
in lieu of either Calculus III or Differential Equations. The 24-credit core com-
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Fig. 10.4 University of Michigan Computer Science and Engineering (CSE) curriculum

puter science required for all students includes fundamental content in discrete math,
object-oriented programming and data structures, algorithms, computer organization
(introduction to computer architectures), and theoretical foundations. Students learn
complexity theory, foundational data structures, and algorithms, and are introduced
to grammars, languages, finite state automata, and Turing Machines. CSE students
have substantial flexibility in selection of junior and senior level technical electives,
and are required to complete amajor design experience that typically includes a team-
based software development effort along with a formal project reporting (technical
communication) requirement.

Figure10.5 illustrates CSE course prerequisites as a dependency graph.1 Required
sophomore and junior courses are highlighted. As shown, Discrete Math (EECS
203) and the sophomore-level programming course (EECS 280) precede the three
remaining required courses (EECS281, EECS370, andEECS376).2 As shown, there
are numerous technical electives available to CSE undergraduates, providing under-
graduates substantial specialization opportunities. CSE has experienced remarkable
growth in the past decade, so even elective classes tend to have most every classroom
seat filled.

Typically, students take EECS 281 (Data Structures and Algorithms) prior to
taking either junior-level course. EECS 280 and 281 in particular have lengthy coding
project requirements. From the author’s experience with undergraduate students,

1This chart is reproduced fromhttps://www.eecs.umich.edu/eecs/undergraduate/computer-science/
17_18_cs_eng.pdf.
2EECS refers to Electrical Engineering and Computer Science.

https://www.eecs.umich.edu/eecs/undergraduate/computer-science/17_18_cs_eng.pdf
https://www.eecs.umich.edu/eecs/undergraduate/computer-science/17_18_cs_eng.pdf
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Fig. 10.5 University ofMichigan Computer Science and Engineering (CSE) prerequisite map with
lists of CSE technical electives

completion of EECS 281 is the “minimumbar” for a student to have reliably achieved
a strong foundation in data structures and programming. This implies that non-CSE
students seeking competence in CSE will need to take a minimum of 12 credit hours
of CSE coursework, EECS 203, EECS 280, and EECS 281, to gain CSE competence.

The Aerospace Engineering department currently recommends students inter-
ested in CSE pursue a CSE minor to supplement their Aerospace major. Students
pursuing this minor must complete EECS 203, EECS 280, EECS 281, and one of
the listed upper-level technical electives. Common choices by Aerospace students
include computer vision, artificial intelligence, and autonomous robotics. The CSE
minor is a good option for an undergraduate student who either can afford tuition
for an extra semester or who arrives with substantial Advanced Placement (AP)
credit. However, a CSE minor is not practical for most students following a standard
curricular track, suggesting the need for further Aerospace curricular revision.3

3The University of Michigan Aerospace Engineering Department does not currently offer a minor
degree option; if available a student selecting a CSEmajor and Aerospace minor would face similar
course credit challenges.
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10.3 Cross-Disciplinary Programs

Two multidisciplinary fields have emerged that have made progress in integrating
Aerospace (AERO) and CSE foundations to some extent: Cyber-Physical Systems
(CPS) and robotics. Background in each is provided below, although the author
acknowledges that in practice neither have targeted Aerospace-specific systems as a
focus of attention.Certainly,CPSand robotics programgraduates have competence in
physics, math, and CSE. However, the Aerospace industry has had trouble attracting
themost talentedCPS and robotics students due to the extremely favorablemarket for
current CPS and robotics graduates. The high demand for CSE, CPS, and robotics
graduates is yet another motivation for augmenting traditional Aerospace degree
programs.

10.3.1 Cyber-Physical Systems (CPS)

The CPS focuses on modeling and control of sensing, mobility, information, and net-
working systems operating in and making decisions about a complex environment
[3–5]. The nature of data, translation, and abstraction of this data, and subsequent
control decisions made in CPS, depend substantially on both the application and
the perspective taken by the researcher studying CPS. CPS research tends to be
customized to the domain of interest, from an autonomous vehicle or cooperative
vehicle team to collaborative human–robot systems. CPS decisions range from coor-
dination and fault-tolerant control of physical actuators to real-time datamanagement
and secure networking. CPS are inherently multidisciplinary, challenging educators
and practitioners to build knowledge of fundamental and application concepts that
cut across, at a minimum, the fields of dynamics and control (control theory) and
computer science (real-time computing).

CPS graduate degree programs have been proposed with some success. In [6], an
embedded systems focus is achieved with curricular content in control, communi-
cation, distributed systems, machine learning, sensors, and security. Reference [7]
emphasizes balance in theoretical and applied CPS coursework and hands-on expe-
rience to support “ready to engineer” graduates. In this work, the goal is to graduate
CPS engineers with knowledge of physics, software, and systems. Specific educa-
tion and experience in collaboration across multidisciplinary teams is encouraged.
Impact of CPS to society should be recognized in the context of economics, human–
machine interfaces, and social/legal contexts. Textbooks in CPS are beginning to be
published [8]. Authors have attempted to undertake the challenge of simultaneously
providing depth in CS, particularly real-time embedded systems, along with depth
in mathematics and control theory for sensor data fusion and robust control.

CPS hold potential to bridge the specific Aerospace—CSE gaps related to
computer-based data management and control for complex physical systems. How-
ever, most CPS research does not extend consideration to the other aspects of the
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Aerospace System, e.g., aerostructural and propulsive systems as well as mission-
specific challenges, particularly for space applications.

10.3.2 Robotics

Robotics is a multidisciplinary area of study that integrates principles of mechani-
cal engineering, electrical engineering, and computer science to design, build, and
deploy physical systems that assist humans or independently complete physical tasks.
Coursework may be characterized in three contexts: sensing, reasoning, and acting.4

Although plagued by comparisons to science fiction, robotic systems first experi-
enced widespread use decades ago in factory assembly environments. Robotics has
experienced rapid growth in the past decade due to affordable microelectronics,
capable processors, and high-density energy storage systems. It is now possible to
rapidly assemble and test gadgets that drive, fly, swim, and grasp at reasonable mon-
etary and time investment. Robotics programs therefore can introduce students to
foundational mathematics and real robotic systems through hands-on manipulator,
driving, and flying systems equipped with onboard sensors, including cameras and
lidar, augmented by off-board motion capture systems.

The goal of “first courses” in “mathematics for roboticists” and “robotic systems”
is to prepare highly capable graduate students with diverse backgrounds for the
spectrum of follow-on robotics courses they select. Today, popular robotics subjects
include machine learning, machine vision, artificial intelligence and planning, linear
and nonlinear control systems, signal processing, mechatronics, and navigation and
mapping. New courses in nontraditional areas such as “robot ethics” are also being
introduced as issues in policy, law, and culture. While robotics programs currently
tend to place primary focus on manipulation, self-driving cars, and human–robot
interaction, UAS or “drones” provide rich experiences for students with interest in
flight, and robotics principles such as task and path planning and navigation through
obstacle fields can also be directly applied to flight vehicles and planetary exploration
systems. A number of high-quality robotics textbooks have been published; early
texts focused on robotic manipulator kinematics, dynamics, and control. Special-
ized texts, online courseware, multimedia instructional materials, and open-access
databases have been developed for use in robotics education and practice. Of partic-
ular relevance are open-source community-developed toolchains such as ROS, the
Robot Operating System (http://www.ros.org), and cloud databases such as Open
Street Map (OSM) (http://www.openstreetmap.org).

4These areas are used to loosely organize the robotics graduate curriculum at the University of
Michigan.

http://www.ros.org
http://www.openstreetmap.org
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10.4 Evolving the Aerospace Engineering Curriculum

This section explores opportunities to evolve the Aerospace Engineering curricula
given topics in CSE, CPS, and Robotics that could improve students’ expertise in
twenty-first-century Aerospace Systems. Certainly, no one, including the author,
would like to see key topics in the current curriculum sacrificed, but future Aerospace
graduate could benefit frommore than the tenuous required CS content included now.

At the core of this challenge are the following key questions:

• What aspects of computer science theory and practice are essential for the
Aerospace Engineering student?

• Given credit limits, what do we remove from the required Aerospace Engineering
curriculum to “make space” for new content?

The first question is beginning to be addressed through analysis of critical founda-
tions for both Aerospace research and projects in industry. The second question has
been more problematic to address, as faculty need to acknowledge that some exist-
ing required course content must become elective. Another barrier to evolution is
accreditation, with organizations such as ABET (http://www.abet.org) insisting that
Aerospace meet the standards required decades ago. Standards must evolve along
with curricula to assure relevance in twenty-first-century Aerospace curricula.

This is not the first paper to address extension of the “traditional Aerospace
pillars”. In 2004, Long [9] proposed a five-pillar structure consisting of (1) fluid
dynamics and thermophysics; (2) propulsion and power; (3) structuralmechanics and
materials; (4) guidance, control, and dynamics; and (5) computing, information, and
communication. This publication appears in the inaugural issue of the AIAA Jour-
nal of Aerospace Computing, Information, and Communication, now the Journal of
Aerospace Information Systems (JAIS). The first four pillars map to the three-pillar
structure presented in Fig. 10.2 with fluid dynamics and propulsion both included
within gas dynamics. The final or fifth pillar represented what Long considered the
essential next step toward a more holistic Aerospace Engineering–CS education.
In later publications, Long described a successful Aerospace software engineering
course introduced at Penn State University [10], with follow-up publications such as
Ref. [11]. The author feels Long’s pain, in that she has spent her career pleading for
Aerospace curricular reform only to face the curriculum shown in Fig. 10.2 despite
over a decade of attempted reform.

Finally, over the past year, steps toward curricular reform have been seriously
taken. Though small steps, there is hope at the University of Michigan, a tradi-
tional department, which means there is also hope for evolution in other traditional
Aerospace programs.5 Ultimately, the pressure to evolve has not come from tradi-

5The Massachusetts Institute of Technology (MIT) has embraced information systems long-term,
with some growing pains as traditional faculty felt fundamentals were being sacrificed. Stanford
University recently introduced an undergraduate Aerospace degree, which offered them a clean
slate in which they were able to include CS content. Other universities have not yet responded;
however, it is likely they are feeling similar pressures to the University of Michigan’s Aerospace
Department.

http://www.abet.org
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Fig. 10.6 Proposed distribution elective for the University of Michigan’s Aerospace Engineering
program

tional Aerospace faculty, nor has it come from the Aerospace industry. It instead has
come from students, who have increasingly sought CS minors and who have begun
to, in some cases, abandon Aerospace as a major due to the challenge of fitting both
AERO and CS into a 4-year program of study. A committee of six faculties covering
Aerospace autonomy, validation and verification, space systems, and computational
fluid dynamics has engaged in proposing specific computing curriculum reforms. To
date, there has been little appetite for adding Aerospace courses that fully mirror CS
courses, but the faculty has approved a curriculum change that will increase student
flexibility, and a new course is being developed to address what are viewed as key
gaps in Aerospace student CS background.

Figure10.6 illustrates a welcome curricular change recently approved by the fac-
ulty. Specifically, the two required extra-departmental courses, one in materials and
one in electrical circuits, have morphed into a “Distribution Elective” to increase stu-
dent flexibility. In the revised curriculum, students can select any two of the six listed
courses, two from Materials Science and Engineering (MSE), two from Electrical
Engineering (EE), and two from CSE. This change will make it easier for Aerospace
students to elect a CSE minor in that at least one CSE minor courses, EECS 280 or
EECS 281, can also count toward the Aerospace degree. Note that students opting
for EECS 281 will have to complete prerequisite EECS 203, but this one additional
course will not prevent most students from selecting the CSE distribution elective
given interest.

With the modified curriculum, Aerospace students will have the opportunity to
deepen their exposures in one ormore out-of-department course sequences.However,
students who do not elect the EECS 280-281 sequence will graduate with no better
CS background than they obtain today. To address this problem, a group ofAerospace
faculty are developing a new 4-credit course with a computer laboratory component
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that assures one-on-one oversight. The course will be comprised of three CS-centric
modules with acknowledged connection to Aerospace: CS fundamentals including
data structures, iterative and recursive algorithms, and computational complexity,
Computational Science including key numerical methods and efficient memory and
computational approaches, and embedded real-time data management and control
with a hardware-based final project (quadcopter operating indoors and outdoors in
a netted facility). As a junior course, students will continue to build on their Matlab
analysis experiences and C/C++ (Arduino) experiences from sophomore year. The
course will offer a combination of new materials and repeat exposures to key CSE
concepts studentsmight not remember long-termwithout this new required exposure.
We envision a team of two faculties, one with expertise in embedded systems and
one with expertise in computational science, to teach the course until clear notes and
baseline projects are established. One in place, students will have required course-
work exposures to CSE topics at freshman, sophomore, and junior levels. Senior
electives in numerical methods and flight software systems will offer students the
option of continuing their CSE studies in Aerospace-centric analysis and embedded
control.

10.5 Conclusion and Discussion

This chapter has summarized state-of-the-practice in K-12, Aerospace Engineering,
and CSE education. Emerging CPS and robotics disciplines were reviewed to offer
ideas for extending the traditional Aerospace curriculum to better incorporate the
breadth of Aerospace Systems topics, particular computer CSE. CSE augmentations
to the University of Michigan’s Aerospace program are proposed and discussed.

Exposure of Aerospace students to CSE concepts now appears within reach; how-
ever, there are two remaining pillars underlying the twenty-first-century “Aerospace
System”: electrical engineering and human factors/operations. While consideration
of fundamentals for these areas is beyond the scope of this paper, it will be important
for Aerospace and CSE programs to continue evolving. Otherwise the gap between
“operators” and “engineers” will continue to widen, and Aerospace Engineers might
eventually be as unaware of how analog and digital circuitry work as they are of
computer science foundations today.
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